than that of the amino-amidine ligand also reflecting the different hybridization of the donor atoms.

Also in compound 3, as already observed in 2, the strict planarity of the aminic group at N(3) and the small value of the C(2)N-(3)C(3)N(2) torsion angle $[-26\ (3)^{\circ}]$ point to an extensive electron delocalization within the amidine group. Thus, according to the valence-bond theory, the amidine moiety can be described in terms of canonical forms A and B, Scheme II. In form B, which might also be stabilized by coordination to the metal, the N(2)-C(3) linkage has a single bond character which could account for the low energy of the cis-trans interconversion process. The phenyl group is slant $[75\ (1)^{\circ}]$ against the amidine plane, probably because of steric interaction with the adjacent tert-butyl group, and does not contribute to the electron delocalization.

It is noteworthy that the free and coordinate ends of the amino-amidine ligand are linked together by a strong hydrogen bond $[N(1)\cdots N(2) = 2.80 (3) \text{ Å}, N(2)-H(2)-N(1) = 167°]$ in such a way to form a pseudo-seven-membered ring which can be compared with the seven-membered metallacycle of compound 2 with a proton taking the place of platinum.

This finding gives a clue to the different isomerization about the C(3)—N(2) double bond observed in 3 as compared with 2. In fact the two different conformations allow the platinum in 2 and the H(2) proton in 3 to come near to the aminic nitrogen [N(1)] and act as a ligating atom to close the seven-membered ring. This also indicates that the ligand molecule has a rather strong tendency to give such a cyclic structure which appears to be preferred either in the solid state or in solution.

The plane of the benzonitrile is nearly perpendicular to that of coordination [dihedral angle of 92 (1)°] as expected on the basis

of steric interactions with cis ligands.

Conclusions

The reaction of a bidentate amine with cis- and trans-[PtCl₂(NCPh)₂] has shown that this very common substrate reacts readily with nucleophiles and the attack of one end of the diamine to a coordinate benzonitrile precedes the coordination of the second end to platinum. The monocoordinated amino-amidine ligand, formed in the first step of the reaction, undergoes cis-trans isomerization about the azomethine double bond and exhibits a strong tendency to form a seven-membered cyclic system either through formation of a strong hydrogen bond between the terminal aminic nitrogen and the platinum-bonded iminic nitrogen of amidine or through coordination of both ends to platinum.

Starting with trans-[PtCl₂(NCPh)₂] the formation of a chelating amino-amidine ligand leads to a cationic complex, still bearing a coordinate benzonitrile, which reacts readily with base to give a benzamidate species. The benzamidate anion forms a strong hydrogen bond with the cis aminic group and slants on the coordination plane.

Acknowledgment. This work has been supported by the Consiglio Nazionale delle Ricerche (C.N.R.) and Ministero della Pubblica Istruzione (M.P.I.) Rome and by the University of Parma.

Registry No. 1, 99727-69-2; **2**·CH₃OH, 99727-71-6; **3**· 1 / $_{2}$ C₆H₃CH₃, 99727-73-8; **4**, 89503-95-7; *trans*-[PtCl₂(NCPh)₂], 51921-56-3; *cis*-[PtCl₂(NCPh)₂], 15617-19-3; *t*-Bu₂en, 4062-60-6; benzonitrile, 100-47-0.

Supplementary Material Available: Listings of observed and calculated structure factors, hydrogen coordinates (Tables SI and SII), and thermal parameters (Tables SIII and SIV) (31 pages). Ordering information is given on any current masthead page.

Deprotonation and Anionic Rearrangements of Organometallic Compounds. 5. Kinetic vs. Thermodynamic Deprotonation in Reactions of Cyclopentadienylrhenium Acyl and Alkyl Complexes with Strong Bases

Poh Choo Heah, Alan T. Patton, and J. A. Gladysz*

Contribution from the Department of Chemisty, University of Utah, Salt Lake City, Utah 84112. Received August 5, 1985

Abstract: Reaction of $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(COR)$ (1a, $R = CH_3$; 1b, $R = CH_2C_6H_5$; 1c, $R = C_6H_5$; 1d, R = H) with Li⁺-N(CH(CH₃)₂)₂ (LDA; THF, -78 °C) and then CH₃I gives $(\eta^5 - C_5H_4COR)Re(NO)(PPh_3)(CH_3)$ (2a-d, 50-78%). Deuterium-labeling experiments indicate that 1 is initially deprotonated to $(\eta^5 - C_5H_4Li)Re(NO)(PPh_3)(COR)$ (3), and ³¹P NMR shows a subsequent rapid rearrangement (3a: <3 min, -95 °C) to Li⁺ $[(\eta^5 - C_5H_4COR)Re(NO)(PPh_3)]^-$ (4). Crossover experiments show $3 \rightarrow 4$ to be intramolecular. Reaction of $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(CH_2C_6H_5)$ with n-BuLi/TMEDA (-78 °C, 5 min) gives $(\eta^5 - C_5H_4Li)Re(NO)(PPh_3)(CH_2C_6H_5)$ (6), which does not rearrange upon warming and yields $(\eta^5 - C_5H_4CH_3)Re(NO)(PPh_3)(CH_2C_6H_5)$ (7, 74%) upon addition of CH₃I. When (+)-(S)- $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(CH_3)$ ((+)-(S)-8, >98% ee) is treated with n-BuLi/TMEDA and then $(RCO)_2O(R = CH_3, C_6H_5CH_2, C_6H_5)$, (-)-(S)-2a, (-)-(S)-2b, and (-)-(S)-2c, all $\ge 98\%$ ee, are obtained. Experiments with optically active 1 then show that 3a $\rightarrow 4$ a proceeds with >90% retention of configuration at rhenium and that 3b $\rightarrow 4$ b and 3c $\rightarrow 4$ c proceed with lesser degrees of retention and inversion, respectively. Pentamethylcyclopentadienyl complexes $(\eta^5 - C_5M_5)Re(NO)(PPh_3)(COCH_2R)$ (10a, R = H; 10b, $R = C_6H_5$) and $R = C_6H_5$) and $R = C_6H_5$ and $R = C_6H$

Carbanions generated by the deprotonation of ligands of organometallic complexes are seeing increased applications in organic

and organometallic synthesis.¹⁻³ For example, over the last few years a number of research groups have reported the generation

Scheme I. Deprotonation and Rearrangement of Acyl Complexes $(\eta^5 - C_5 H_5) Re(NO)(PPh_3)(COR)$ (1)

of enolate anions derived from transition-metal acyl complexes, as shown in eq i.2 These anions undergo ready alkylation, and when the metal moiety is chiral, impressive 1,3-asymmetric induction is often observed. 2a,c,e,j,k,m,n,p

There is a rich migration chemistry that occurs when alkyl ligands attached to main group elements are deprotonated. For example, in the Wittig rearrangement (eq ii),4 proton abstraction on a carbon adjacent to an ether oxygen (step a) is followed by facile alkyl migration to give an alkoxide anion (step b). Similar rearrangements occur when ammonium and sulfonium salts are deprotonated (Stevens rearrangement)⁵ and in silicon-containing substrates (Brook rearrangement).6 Surprisingly, few if any transition-metal analogues of such rearrangements are known. 7.8

$$R'$$
— O — CH_2R $\frac{B:^-}{(a)}$ R' — O — $\hat{C}HR$ $\frac{}{(b)}$ ^-O — CHR (ii)

(1) See, inter alia: (a) Jaouen, G.; Top, S.; Laconi, A.; Couturier, D.; Brocard, J. J. Am. Chem. Soc. 1984, 106, 2207. (b) Wulff, W. D.; Gilbertson, S. R. Ibid. 1985, 107, 503. (c) Beevor, R. G.; Freeman, M. J.; Green, M.; Morton, C. E.; Orpen, A. G. J. Chem. Soc., Chem. Commun. 1985, 68. (d) Magnus, P.; Becker, D. P. Ibid. 1985, 640. (e) Blagg, J.; Davies, S. G. Ibid. 1985, 653. (f) Casey, C. P. CHEMTECH 1979, 9, 378. (2) (a) Theopold, K. H.; Becker, P. N.; Bergman, R. G. J. Am. Chem. Soc. 1982, 104, 5250. (b) Aktogu, N.; Felkin, H.; Davies, S. G. J. Chem. Soc., Chem. Commun. 1982, 1303. (c) Baird, G. J.; Bandy, J. A.; Davies, S. G.; Prout, K. Ibid. 1983, 1202. (d) Liebeskind, L. S.; Welker, M. E. Organometallics 1983, 2, 194. (e) Baird, G. J.; Davies, S. G. J. Organomet. Chem.

Chem. Commun. 1983, 1202. (d) Liebeskind, L. S.; Welker, M. E. Organometallics 1983, 2, 194. (e) Baird, G. J.; Davies, S. G. J. Organomet. Chem. 1983, 248, Cl. (f) Lenhert, P. G.; Lukehart, C. M.; Srinivasan, K. J. Am. Chem. Soc. 1984, 106, 124. (g) Liebeskind, L. S.; Welker, M. E.; Goedken, V. Ibid. 1984, 106, 441. (h) Ho, S. C. H.; Straus, D. A.; Armantrout, J.; Schaefer, W. P.; Grubbs, R. H. Ibid. 1984, 106, 2210. (i) Davies, S. G.; Dordor, I. M.; Warner, P. J. Chem. Soc., Chem. Commun. 1984, 956. (j) Broadley, K.; Davies, S. G. Tetrahedron Lett. 1984, 25, 1743. (k) Davies, S. G.; Dordor, I. M.; Walker, J. C.; Warner, P. Ibid. 1984, 25, 2709. (l) Liebeskind, L. S.; Welker, M. E. Ibid. 1984, 25, 4341. (m) Davies, S. G.; Dordor-Hedgecock, I. M.; Warner, P. Ibid. 1985, 26, 2125. (n) Ambler, P. W.; Davies, S. G. Ibid. 1985, 26, 2129. (o) Brinkman, K.; Helquist, P. Ibid. 1985, 26, 2845. (p) Liebeskind, L. S.; Fengl, R. W.; Welker, M. E. Ibid. 1985, 26, 3075. (q) Liebeskind, L. S.; Welker, M. E. Ibid. 1985, 26, 3079. (3) Crocco, G. L.; Gladysz, J. A. J. Am. Chem. Soc. 1985, 107, 4103. (4) Schöllkopf, U. Angew. Chem., Int. Ed. Engl. 1970, 9, 763. (5) (a) Pine, S. H. Org. React. 1970, 18, 403. (b) Trost, B. M.; Melvin, L. S., Jr. "Sulfur Ylides"; Academic Press: New York, 1975; Chapter 7 and Table A.VII.
(6) Brook, A. G.; Bassindale, A. R. In "Rearrangements in Ground and Table A.VII.

(6) Brook, A. G.; Bassindale, A. R. In "Rearrangements in Ground and Excited States"; P. De Mayo, Ed.; Academic Press: New York, 1980; Vol 2, Essay 9, Table 2.

In this paper, we describe reactions of cyclopentadienylrhenium acyl complexes $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(COR)$ (1)⁹ with strong bases. Depending upon the substrate and conditions, either enolate formation (eq i) or rearrangement chemistry (eq ii) can occur. We also report related chemistry of alkyl complexes (η^5 -C₅H₅)-Re(NO)(PPh₃)(R) and pentamethylcyclopentadienyl acyl complexes $(\eta^5-C_5Me_5)Re(NO)(PPh_3)(COR)$. From this study, a detailed picture of the acid/base properties of these molecules emerges.¹⁰

Results

I. Deprotonations of Cyclopentadienyl Ligands; Acyl Complexes. Acetyl complex (η^5 -C₅H₅)Re(NO)(PPh₃)(COCH₃) (1a)⁹ was treated with LDA11 (1.6-2.1 equiv) in THF at -78 °C (5-20 min). Subsequent addition of CH₃I (2-3 equiv) gave methyl complex $(\eta^5-C_5H_4COCH_3)Re(NO)(PPh_3)(CH_3)$ (2a) in 70-80% yields after chromatographic workup (Scheme I). No trace of propionyl complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)(COCH_2CH_3)^9$ or isobutyroyl complex $(\eta^5-C_5H_5)$ Re(NO)(PPh₃)(COCH(CH₃)₂)¹²—plausible products if the acetyl ligand in 1a had been deprotonated as in eq i-were detected. Complex 2a was characterized as summarized in Table I. Its ¹H and ¹³C NMR spectra showed patterns characteristic of a monosubstituted cyclopentadienyl ligand, and the methyl ¹H NMR resonance exhibited phosphorus coupling $(J_{HP} = 5.7 \text{ Hz})$ typical for a Re(PPh₃)(CH₃), ¹³ as opposed to a $(\eta^5 - C_5 H_4 CH_3) Re(PPh_3)$ ($J_{HP} < 1$ Hz; see below), ligand array. The migration of the acetyl moiety from rhenium to carbon was also evidenced by an increase in $\nu_{C=0}$ from 1545 to 1664 cm⁻¹.

The generality of this transformation was probed with additional substrates, as summarized in Scheme I. Phenylacetyl complex 1b, benzoyl complex 1c, and formyl complex 1d all underwent identical reactions with LDA and CH₃I (1b, 1c) or CH₃OSO₂CF₃ (1d) to give methyl complexes $(\eta^5 - C_5H_4COR)Re(NO)(PPh_3)$ (CH₃) (**2b-d**) in good yields. When **1b** was treated with LDA (-78 °C) and then Br₂ (2.1 equiv, -78 °C), bromide complex $(\eta^5-C_5H_4COCH_2C_6H_5)Re(NO)(PPh_3)(Br)$ (5) was obtained in 58% yield after workup. However, when 1a or 1b were treated with LDA and then acylating agents (benzoyl chloride, acetyl chloride, trifluoroacetic acid anhydride, phenylacetyl halides), a multitude of products formed.

One possible mechanism for the transformation $1 \rightarrow 2$ would entail initial cyclopentadienyl ligand deprotonation to give (η^5 -C₅H₄Li)Re(NO)(PPh₃)(COR) (3), followed by acyl ligand migration to give rhenium "anion" Li⁺[$(\eta^5-C_5H_4COR)Re(NO)$ -(PPh₁)] (4), as shown in Scheme I. It should be emphasized that the structural representation of 4 in Scheme I is approximate, as most metal anions ion pair to Li⁺ (and Na⁺) in THF, 14 and there are at least three possible binding sites in 4 (Re, NO oxygen, acyl oxygen). We sought evidence bearing on the mechanism in Scheme I.

^{(7) (}a) Dean, W. K.; Graham, W. A. G. Inorg. Chem. 1977, 16, 1061. (b) Werner, H.; Hofmann, W. Angew. Chem., Int. Ed. Engl. 1978, 17, 464. (c) Berryhill, S. R.; Sharenow, B. J. Organomet. Chem. 1981, 221, 143. (d) Thum, G.; Ries, W.; Greissinger, D.; Malisch, W. Ibid. 1983, 252, C67. (e) Berryhill, S. R.; Clevenger, G. L.; Burdurlu, F. Y. Organometallics 1985, 4, 1500.

⁽⁸⁾ Ortiz, J. V.; Havlas, Z.; Hoffmann, R. Helv. Chim. Acta 1984, 67, 1.
(9) Buhro, W. E.; Wong, A.; Merrifield, J. H.; Lin, G.-Y.; Constable, A.
G.; Gladysz, J. A. Organometallics 1983, 2, 1852.
(10) A portion of this work has been communicated: (a) Heah, P. C.;

Gladysz, J. A. J. Am. Chem. Soc. 1984, 106, 7636. (b) Heah, P. C.; Gladysz,

⁽¹¹⁾ Abbreviations: (a) LDA = Li⁺-N(CH(CH₃)₂)₂. (b) TMEDA = N,N,N',N'-tetramethylenediamine. (c) Eu(Opt) = tris[3-(trifluoromethylhydroxymethylene)-d-camphoratoleuropium. (d) DBU = 1,8-diaza-

methylhydroxymethylene)-d-camphorato]europium. (d) DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.
(12) Smith, D. E.; Gladysz, J. A. Organometallics 1985, 4, 1480.
(13) Tam, W.; Lin, G.-Y.; Wong, W.-K.; Kiel, W. A.; Wong, V. K.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 141.
(14) See, inter alia: (a) Kao, S. C.; Darensbourg, M. Y.; Schenk, W. Organometallics 1984, 3, 871. (b) Darensbourg, M. Y.; Jimenez, P.; Sackett, J. R.; Hanckel, J. M.; Kamp, R. L. J. Am. Chem. Soc. 1982, 104, 1521. (c) Edgell, W.; Chanjamsri, S. Ibid. 1980, 102, 147. (d) Pannell, K. H.; Jackson, D. Ibid. 1976, 98, 4443.

Labeled acetyl complex $(\eta^5-C_5D_5)Re(NO)(PPh_3)(COCH_3)$ $(1a-d_5)$ was synthesized analogously to $1a^9$ except that precursor complex (n⁵-C₅D₅)Re(CO)₃ was prepared from (CO)₅ReBr and readily available¹⁵ TlC₅D₅. Mass spectrometric analysis indicated that a (90 ± 2) : (10 ± 2) 1a- d_5 /1a- d_4 mixture was obtained. This sample was treated with LDA and then CH₃I as described above Subsequently isolated was methyl complex $(\eta^5$ $C_5D_4COCH_3)Re(NO)(PPh_3)(CH_3)$ (2a-d₄; >98:2 d₄/d₃). This indicates that LDA abstracts a cyclopentadienyl proton of 1a to give $(\eta^5 - C_5H_4Li)Re(NO)(PPh_3)(COCH_3)$ (3a). Also, since the product $2a-d_4$ was of greater isotopic purity than the starting material 1a- d_5 , deprotonation must involve a substantial $k_{\rm H}/k_{\rm D}$.

Others labeled complexes were also studied. Formyl complex $(\eta^5 - C_5 H_5) \text{Re}(NO)(PPh_3)(CDO) (1d - d_1; (95 \pm 2): (5 \pm 2) d_1/d_0)$ gave, when treated with LDA and then CH3OSO2CF3 as above, methyl complex $(\eta^5-C_5H_4CDO)Re(NO)(PPh_3)(CH_3)$ (2d-d₁; (95) \pm 2):(5 \pm 2) d_1/d_0). A similar reaction of $(\eta^5 - C_5D_5)Re(NO)$ - $(PPh_3)(CDO)$ (1d-d₆; ca. 90:10 C₅D₅/C₅D₄H; ca. 95:5 CDO/ CHO; total $(82 \pm 2):(16 \pm 2):(2 \pm 1) d_6/d_5/d_4)$ gave $(\eta^5 C_5D_4CDO)Re(NO)(PPh_3)(CH_3)$ (2d- d_5 ; (88 ± 2):(12 ± 2) d_5/d_4). Reaction of acetyl complex $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(COCD_3)$ (1a-d₃: >98:2 d₃/d₂) with LDA and then CH₃I gave $(\eta^5 - Q_3)$ $C_5H_4COCD_xH_{3-x})Re(NO)(PPh_3)(CH_3)$ (2a-d_x) with x = 3, 2,1, and 0. The remaining deuterium could be washed out of this $2a-d_x$ by resubjecting it to the reaction conditions (0.2 equiv of LDA in THF, then CH₃I).

Having established the site of deprotonation in Scheme I, we next attempted the spectroscopic detection of intermediates. The reaction of acetyl complex 1a with LDA was monitored by ³¹P NMR spectroscopy at -95 °C. The starting material resonance (15.6 ppm) was immediately replaced (<3 min) by a broad multiplet centered at 43.8 ppm. No change was observed when the solution was warmed to -5 °C. The same result was obtained when n-BuLi (1.2 equiv) was used in place of LDA. However, t-BuLi gave numerous products. In other studies, we have noted that ³¹P NMR resonances in the 40-47-ppm range are characteristic of anionic rhenium complexes Li⁺[(η⁵-C₅H₄X)Re- $(NO)(PPh_3)]^{-.16}$

When CH₃I was added to the 43.8-ppm intermediate, methyl complex 2a formed. When LDA was added to a 1:1 mixture of 1a and CH₃I at -78 °C, 2a was subsequently isolated as the major product (35%). We therefore conclude that Li⁺[(η^5 -C₅H₄COCH₃)Re(NO)(PPh₃)] (4a) is the 43.8-ppm intermediate and that the acetyl migration 3a → 4a (Scheme I) is rapid at -95

The reaction of formyl complex 1d with LDA was also monitored by ³¹P NMR spectroscopy (-86 °C). The starting material resonance (16.0 ppm) was immediately replaced (<3 min) by a broad multiplet centered at 32.3 ppm. After 5 min, a new multiplet at 41.6 ppm was also observed. This species replaced the 32.3-ppm intermediate over the course of 50 min and showed no decomposition over the course of 1 h at room temperature. Subsequent addition of CH₃OSO₂CF₃ (2.6 equiv, -86 °C) gave 2d (20.1 ppm) and other lesser products (25.3, 25.1, 24.7, 23.2 ppm) which, with time and/or warming, decreased as 2d increased. Complexes of the type (η^5 -C₅H₄Li)Re(NO)(PPh₃)(X) characteristically exhibit ³¹P NMR resonances in the 25-35-ppm range (vide infra). ¹⁶ We tentatively suggest that $(\eta^5-C_5H_4Li)Re$ (NO)(PPh₃)(CHO) (3d) is the 32.3-ppm intermediate, 16b that $Li^{+} [(\eta^{5}-C_{5}H_{4}CHO)Re(NO)(PPh_{3})]^{-}$ (4d) is the 41.6-ppm intermediate, and that formyl migration (3d -> 4d) is slower than acetyl migration.

In order to establish the molecularity of the rearrangement 3 → 4, several types of crossover experiments were conducted. First, co-reaction of a 1:1 mixture of benzoyl complexes 1c and (η^5 - $C_5D_5)Re(NO)(PPh_3)(COC_6D_5)$ (1c- d_{10}) with LDA and CH₃I as above gave exclusively methyl complexes 2c and $(\eta^5$ $C_5D_4COC_6D_5)Re(NO)(PPh_3)(CH_3)$ (2c-d₉). No intermediate labels $(2c-d_4, 2c-d_5)$ were detected. Since this experiment could conceivably be biased against crossover due to an isotope effect in the deprotonation step, a 1:1 mixture of 1c and $(\eta^5-C_5H_5)$ - $Re(NO)(PPh_3-d_5)(COC_6D_5)$ (1c- d_{10}) were co-reacted similarly (eq iii) and at two different concentrations (8.3 M, 31.3 M). In each case, only 2c and $(\eta^5-C_5H_4COC_6D_5)Re(NO)(PPh_3-d_5)(CH_3)$ (2c- d_{10}) were obtained. This experiment also excludes PPh₃ dissociation at any time during the reaction sequence. A 0.95:1.00 mixture of formyl complexes 1d and $(\eta^5-C_5D_5)Re(NO)(PPh_3)$ -(CDO) $(1-d_6; (85 \pm 2): (15 \pm 2) d_6/d_5)$ was reacted with LDA and then $CH_3OSO_2CF_3$ as in Scheme I. The resulting 2d- d_x consisted of a (92 ± 2) : (8 ± 2) ratio of 2d- $d_0/2$ d- d_1 and a (85) \pm 2):(15 \pm 2) ratio of 2d-d₅/2d-d₄. Hence, the rearrangement 3d → 4d is largely, but not necessarily entirely, intramolecular.

II. Deprotonation of Cyclopentadienyl Ligands; Alkyl Complexes. We sought to probe the generality of rhenium to η^5 -C₅H₄Li ligand migration and determine the acyl migration stereochemistry. Hence, the deprotonation of alkyl complexes $(\eta^5-C_5H_5)Re$ (NO)(PPh₃)(R) was examined. Treatment of benzyl complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH_2C_6H_5)$ (eq iv; ³¹P NMR, 24.4 ppm)¹⁷ with 1.5 equiv of *n*-BuLi/TMEDA¹¹ in THF at -78 °C gave a rapid (<5 min) and quantitative conversion to (η^5 - C_5H_4Li)Re(NO)(PPh₃)(CH₂C₆H₅) (6), as assayed by ³¹P NMR (25.8 ppm),166 and subsequent methylation (CH3I, -78 °C) to $(\eta^5-C_5H_4CH_3)Re(NO)(PPh_3)(CH_2C_6H_5)$ (7, 74%). Treatment of $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(CH_2C_6H_5)$ with *n*-BuLi also gave 6, but complete reaction required 1.5 h at -24 °C. In a separate ³¹P NMR monitored experiment, 6 showed no appreciable rearrangement or decomposition over the course of 30 min at 25 °C.

Treatment of methyl complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH_3)$ (8; ³¹P NMR, 25.1 ppm)¹³ with 2.1 equiv of n-BuLi/TMEDA in THF at -78 °C gave a slower (10 min) but still quantitative conversion to $(\eta^5 - C_5 H_4 Li) Re(NO) (PPh_3) (CH_3)$ (9), as assayed by ³¹P NMR (28.2 ppm) ¹⁶⁶ and subsequent derivatization. Neither LDA nor n-BuLi effected deprotonation of 8 at -78 °C, and deprotonation was incomplete when only 1.5 equiv of n-BuLi/ TMEDA was used. When 9 was treated with acetic anhydride (-24 °C), 2a was obtained (38% conversion yield). When 9 was similarly treated with phenylacetic anhydride and benzoic anhydride, 2b and 2c were obtained. Reaction of 9 with either phenylacetyl chloride or bromide did not give 2b. Complex 9

⁽¹⁵⁾ Anderson, G. K.; Cross, R. J.; Phillips, I. G. J. Chem. Soc., Chem. Commun. 1978, 709.

^{(16) (}a) Crocco, G. L.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1985, 283. (b) We find 16a,c the ^{31}P NMR resonances of $(\eta^5-C_5H_4Li)Re-$ (NO)(PPh₃)(X) complexes to generally be sharp and 3-5 ppm downfield of precursor complexes (η^5 -C₅H₃)Re(NO)(PPh₃)(X). However, the broad 32.3-ppm resonance we have provisionally assigned to 3d (1d, 16.0 ppm) is an exception; this may be due to a structural perturbation such as binding of the formyl oxygen to the lithium of η^5 -C₅H₄Li. (c) Crocco, G. L. Ph.D. Thesis, University of Utah, 1986.

⁽¹⁷⁾ Kiel, W. A.; Lin, G.-Y.; Constable, A. G.; McCormick, F. B.; Strouse, C. E.; Eisenstein, O.; Gladysz, J. A. J. Am. Chem. Soc. 1982, 104, 4865.

Table I. Spectroscopic Characterization of New Rhenium Complexes

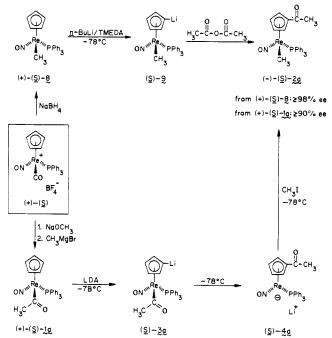

<u> </u>	IR (thin film,		•	31P{1H} NMR ^d (ppm,	
complex	cm ⁻¹)	1 H NMR a,b (δ , CDCl ₃)	¹³ C NMR ^{b,c} (ppm, CD ₂ Cl ₂)	CDCl ₃)	mass spectrum $(m/e, 70 \text{ eV}, ^{187}\text{Re})$
ON - PPR 3	ν _{C=0} 1664 m ν _{N=0} 1641 s	7.53-7.26 (m, 3 C_6H_5); 5.50, 5.24, 4.96, 4.14 (br m, C_5H_4); 2.22 (s, COCH ₃); 0.82 (d, $J = 5.7$, ReCH ₃)	194.2 (s, C=O); PC ₆ H ₅ at 135.7 (d, $J = 52.8$, ipso), 134.2 (d, $J = 10.9$), 131.0 (s, p), 129.0 (d, $J = 10.9$); C ₅ H ₄ at 101.8 (s), 95.9 (s), 95.8 (d, $J = 5.6$, ipso), 86.7 (s), 85.8 (s); 26.7 (s, COCH ₃); -31.2 (d, $J = 6.6$, ReCH ₃)	21.0	601 (M ⁺ , 100%) 586 (M ⁺ - CH ₃ , 45%) 585 (28%) 543 (M ⁺ - CH ₃ - COCH ₃ , 14%) 278 (Ph ₃ PO ⁺ , 2%) 277 (Ph ₃ PO ⁺ - H, 6%) 262 (Ph ₃ P ⁺ , 58%)
© CH2C4M3	ν _C —0 1660 m ν _N —0 1640 s	7.47–7.21 (m, 4 C_6H_5); 5.48, 5.27, 4.97, 4.12 (br m, C_5H_4); 3.78 (s, CH_2); 0.82 (d, $J = 5.5$, CH_3)	194.1 (s, C=O); CC_6H_5 at 135.9 (s, ipso), 130.2 (s), 129.0 (s), 127.3 (s); PC_6H_5 at 135.4 (d, $J = 53.2$, ipso), 134.2 (d, $J = 10.5$), 131.1 (s, p), 129.1 (d, $J = 11.3$); C_5H_4 at 103.0 (s), 96.1 (s), 95.0 (d, $J = 5.7$, ipso), 86.3 (s), 85.1 (s); 53.8 (s, CH_2); -30.4 (d, $J = 6.9$, CH_3)	21.0	677 (M ⁺ , 57%) 662 (M ⁺ - CH ₃ , 14%) 661 (41%) 543 (M ⁺ - CH ₃ - COCH ₂ Ph, 6%) 278 (Ph ₃ PO ⁺ , 8%) 277 (Ph ₃ PO ⁺ - H, 20%) 262 (Ph ₃ P ⁺ , 100%)
ON - Pons CH3 26	ν _C =0 1629 m ν _N =0 1646 s	7.69-7.26 (m, 4 C_6H_5); 5.51, 5.28, 5.11, 4.32 (br m, C_5H_4); 0.92 (d, $J = 5.5$, CH_3)	192.5 (s, C=O); CC_6H_5 at 140.0 (s, ipso), 132.0 (s), 129.0 (s), 128.6 (s); PC_6H_5 at 135.6 (d, $J = 53.2$, ipso), 134.2 (d, $J = 10.5$), 131.0 (s, p), 129.1 (d, $J = 10.2$); C_5H_4 at 102.8 (s), 94.9 (s), 94.1 (d, $J = 5.7$, ipso), 88.2 (s), 87.8 (s); -30.0 (d, $J = 6.9$, CH_3)	20.6	663 (M ⁺ , 55%) 648 (M ⁺ - CH ₃ , 14%) 647 (28%) 541 (M ⁺ - CH ₃ - COPh, 6%) 278 (Ph ₃ PO ⁺ , 4%) 277 (Ph ₃ PO ⁺ - H, 11%) 262 (Ph ₃ P ⁺ , 100%)
ON- R PPh3 24	$\nu_{\rm C=0}$ 1673 m $\nu_{\rm N=0}$ 1638 s	9.27 (s, CHO); 7.47-7.33 (m, 3 C_6H_5); 5.57 (1 H), 5.01 (2 H), 4.56 (1 H) (br m, C_5H_4); 0.79 (d, $J = 5.8$, CH_3)*	185.5 (s, C=O); PC_6H_5 at 135.7 (d, $J = 53.4$, ipso), 134.3 (d, $J = 10.6$), 131.2 (s, p), 129.2 (d, $J = 10.6$); C_5H_4 at 100.7 (s), 95.7 (s, ipso), 92.4 (s), 90.4 (s), 87.6 (s); -30.5 (d, $J = 7.0$, CH_3)	19.7*	587 (M ⁺ , 100%) 572 (M ⁺ - CH ₃ , 26%) 262 (Ph ₃ P ⁺ , 72%)
CN PPh3	ν _{C=O} 1665 m ν _{N=O} 1685 s	7.83–6.83 (m, 4 C_6H_5); 5.47, 5.03, 4.83, 3.81 (br m, C_5H_4); 3.93 (s, CH_2) ^{f,g}	194.0 (s, C=O); CC_6H_5 at 135.4 (s, ipso), 130.5 (s), 129.0 (s), 127.3 (s); PC_6H_5 at 134.5 (d, $J = 10.4$), 134.4 (d, $J = 54.2$, ipso), 131.5 (s, p), 129.2 (d, $J = 12.0$); C_5H_4 at 109.6 (s), 101.0 (s), 96.7 (d, $J = 8.2$, ipso), 83.3 (s), 80.7 (s); 47.2 (s, CH_2)	12.98	
ON PPPP 3 HECCOETS	ν _{N=O} 1628 s	8.03-7.37 (m, 4 C_6H_5); 5.84, 5.63, 5.18, 4.79 (br m, C_5H_4); 4.11 (dd, J_{HH} = 11.5, J_{PH} = 8.5, ReCH _{α}); 3.26 (dd, J_{HH} = 11.5, J_{PH} = 2.0, ReCH _{α'}); 2.36 (s, CH ₃) ^e	CC_6H_5 at 159.9 (d, $J = 3.5$, ipso), 128.0 (s), 127.7 (s), 122.3 (s); PC_6H_5 at 137.0 (d, $J = 50.8$, ipso), 134.3 (d, $J = 10.8$), 130.6 (s, p), 129.0 (d, $J = 10.8$); C_5H_4 at 105.3 (s, ipso), 95.5 (d, $J = 4.0$), 92.3 (s), 89.6 (s), 86.3 (s); 13.4 (s, CH_3); -2.0 (d, $J = 4.2$, CH_2)	25.6*	649 (M ⁺ , 21%) 558 (M ⁺ - CH ₂ Ph, 100%) 449 (RePPh ₃ ⁺ , 8%) 387 (M ⁺ - PPh ₃ , 35%) 262 (PPh ₃ ⁺ , 52%)
CN PPh3 TCCCCO SIICH313	$\nu_{N=0}$ 1652 s $\nu_{C=0}$ 1535 m	7.51-7.36 (m, 3 C_6H_5); 5.20 (s, C_5H_5); 2.81 (d, J_{HH} = 10.6, CH_β); 1.48 (d, J_{HH} = 10.6, CH_β '); 0.06 (s, Si(CH_3) ₃)	255.7 (d, $J = 9.2$, C=O); PC ₆ H ₅ at 136.1 (d, $J = 55.0$, ipso), 134.3 (d, $J = 10.7$), 130.9 (s, p), 128.9 (d, $J = 10.7$); 93.7 (s, C ₅ H ₅); 57.2 (s, CH ₂); -0.51 (s, Si(CH ₃) ₃) ^h	16.6	
ON Re PPhs H2C C O SICCH313	ν _{N=O} 1650 s	7.60-7.31 (m, 3 C_6H_5); 5.09 (s, C_5H_5); 4.52 (d, $J = 1.8$, CH_β); 3.99 (d, $J = 1.0$, CH_β '); 0.00 (s, Si(CH_3) ₃) ^e	165.7 (d, $J = 11.7$, ReC); PC ₆ H ₅ at 136.9 (d, $J = 53.6$, ipso), 134.6 (d, $J = 11.1$), 130.6 (d, $J = 2.2$, p), 128.6 (d, $J = 10.3$); 93.4 (s, CH ₂); 91.9 (s, C ₅ H ₅); 0.4 (s, Si(CH ₃) ₃)	21.5*	659 (M ⁺ , 5%) 569 (M ⁺ - $C_3H_{10}OSi$, 10%) 544 (M ⁺ - $C_5H_{11}OSi$, 24%) 467 (M ⁺ - $C_5H_{11}OSi$ - Ph, 10%) 435 (11%) 262 (Ph ₃ P ⁺ , 100%)
ON" A" PPP 3 H 50 - 50 H 58.851-16	ν _{N=0} 1650 s ν _C =0 1564 m	7.42–7.35 (m, 3 PC ₆ H ₅); 7.04–6.48 (m, CC ₆ H ₅); 5.18 (s, C ₅ H ₅); 4.08 (q, J_{HH} = 7.4, CH); 1.49 (d, J_{HH} = 7.4, CH ₃)	253.9 (d, $J = 8.6$, C=O); CC_6H_5 at 143.7 (s), 128.6 (s), 127.3 (s), 125.3 (s); PC_6H_5 at 136.4 (d, $J = 54.9$, ipso), 133.8 (d, $J = 11.1$), 130.5 (d, $J = 2.2$, p), 128.6 (d, $J = 10.9$); 92.7 (s, C_5H_5); 70.1 (s, CH); 19.8 (s, CH_3) ^h	15.7	678 (MH ⁺ , 9%) 572 (M ⁺ - C ₈ H ₁₀ , 71%) 544 (M ⁺ - C ₉ H ₁₀ O, 10%) 263 (Ph ₃ PH ⁺ , 40%) 262 (Ph ₃ P ⁺ , 60%) 185 (Ph ₂ P ⁺ , 100%)
ON Re PPR	ν _{NumO} 1652 s ν _C —ο 1583 m	7.35–6.96 (m, 3 C ₆ H ₅); 3.37 (s, CO ₂ CH ₃); 1.70 (s, 5 CH ₃) ^g	202.0 (d, $J = 12.7$, C=O); PC ₆ H ₅ at 135.9 (d, $J = 51.8$, ipso), 134.5 (d, $J = 10.4$), 130.0 (s, p), 128.2 (d, $J = 10.4$); 101.4 (s, C ₅ (CH ₃) ₅); 48.9 (s, CO ₂ CH ₃); 9.6 (s, C ₅ CH ₃) ₅)¢	21.38	

Table I (Continued)

complex	IR (thin film, cm ⁻¹)	1 H NMR a,b (δ , CDCl ₃)	¹³ C NMR ^{b,c} (ppm, CD ₂ Cl ₂)	³¹ P{ ¹ H} NMR ^d (ppm, CDCl ₃)	mass spectrum (m/e , 70 eV, 187 Re)
CN PPPn3 H3C COO	ν _{N≡O} 1637 s ν _C =O 1552 m	7.60-7.20 (m, 3 C ₆ H ₅); 1.88 (s, CH ₃); 1.73 (s, 5 CH ₃)	264.5 (d, $J = 7.0$, C=O); PC ₆ H ₅ at 135.3 (d, $J = 53.4$, ipso), 134.3 (d, $J = 11.2$), 130.6 (s, p), 128.7 (d, $J = 10.0$); 102.6 (s, C ₅ (CH ₃) ₅): 50.8 (s, COCH ₃); 9.8 (s, C ₅ CH ₃) ₅) ^h	19.0	657 (M ⁺ , 11%) 642 (M ⁺ - CH ₃ , 100%) 614 (M ⁺ - COCH ₃ , 54%) 505 (8%) 262 (Ph ₃ P ⁺ , 35%) 185 (Ph ₂ P ⁺ , 26%)
ON PR PPR3 CEMSCH2COO	$\nu_{N=0}$ 1636 s $\nu_{C=0}$ 1574 m	7.53-7.40 (m, 3 PC_6H_5); 7.21-7.08 (m, CC_6H_5); 3.66 (d, J_{HH} = 11.3, CH_β); 2.83 (d, J_{HH} = 11.3, CH_β '); 1.53 (s, 5 CH_3)	261.2 (d, $J = 10.3$, C=O); C ₆ H ₅ at 138.0 (s), 130.7 (s), 128.3 (s), 125.6 (s); PC ₆ H ₅ at 134.5 (d, $J = 10.7$ Hz), 130.5 (s, p), 128.8 (d, $J = 10.6$ Hz), 102.7 (s, C ₅ (CH ₃) ₅); 71.4 (s, CH ₂); 9.5 (s, C ₅ (CH ₃) ₅) ^h	17.3 ^k	734 (MH ⁺ , 23%) 642 (M ⁺ - CH ₂ Ph, 100%) 614 (M ⁺ - COCH ₂ Ph, 5%) 262 (Ph ₃ P ⁺ , 31%) 185 (Ph ₂ P ⁺ , 61%) [†]
CN-PE-OONS CN-SCH ₂ CSO	$\nu_{N=0}$ 1636 s $\nu_{C=0}$ 1546 m	7.50-7.30 (m, 3 C_6H_5); 2.24 (dt, $J_{HH} = 7.5$, $J_{HH} =$ 15.5, CH_β); 2.01 (dt, $J_{HH} = 7.5$, $J_{HH} = 15.5$, CH_β '); 1.73 (s, $C_5(CH_3)_5$); 0.50 (t, $J_{HH} = 7.5$, CH_2CH_3)	264.9 (d, $J = 8.3$, C=O); PC ₆ H ₅ at 135.6 (d, $J = 50.7$, ipso), 134.4 (d, $J = 11.1$), 130.5 (s, p), 128.6 (d, $J = 11.0$); 102.3 (s, C ₅ (CH ₃) ₅); 56.9 (s, CH ₂); 9.8 (s, C ₅ (CH ₃) ₅); 9.4 (s, CH ₂ CH ₃) ^h	18.7	671 (M ⁺ , 2%) 642 (M ⁺ - C ₂ H ₅ , 100%) 614 (M ⁺ - COC ₂ H ₅ , 41%) 505 (8%) 262 (Ph ₃ P ⁺ , 14%) 185 (Ph ₂ P ⁺ , 14%)
12 CV_H ² ob ² 3	ν _{N=0} 1632 s ν _{C=0} 1548 m	7.46-7.39 (m, 3 PC_6H_5); 7.26-7.12 (m, CC_6H_5); 4.07 (q, J_{HH} = 6.8, CH); 1.38 (s, $C_5(CH_3)_5$); 0.36 (d, J_{HH} = 6.8, CH_3)	263.6 (d, $J = 9.4$, C=O); CC ₆ H ₅ at 142.8 (s), 129.1 (s), 127.9 (s), 125.4 (s); PC ₆ H ₅ at 133.9 (br s), 130.3 (s), 128.6 (d, $J = 10.4$). 102.4 (s, C ₅ (CH ₃) ₅); 73.4 (s, CH); 15.6 (s, CHCH ₃); 8.9 (s, C ₅ (CH ₃) ₅).	18.0 ^k	748 (MH ⁺ , 10%) 642 (M ⁺ – CH(CH ₃)Ph, 60%) 614 (M ⁺ – COCH(CH ₃)Ph, 75%) 262 (Ph ₃ P ⁺ , 42%) 185 (Ph ₂ P ⁺ , 100%) ⁴

^aAt 300 MHz and ambient probe temperature and referenced to internal (CH₃)₄Si, unless noted; all couplings are in Hz. ^bAll couplings (Hz) are to phosphorus unless noted. ^cAt 75 MHz and ambient probe temperature and referenced to internal (CH₃)₄Si unless noted. ^dAt 32.2 MHz and ambient probe temperature and referenced to external 85% H₃PO₄, unless noted. ^eIn CD₂Cl₂. ^fAt 80 MHz. ^gIn C₆D₆. ^hIn CDCl₃ and referenced to CDCl₃ at 77.0 ppm. ^lChemical ionization (CH₄) mass spectrum. ^fNo ipso carbon observed. ^kIn THF.

Scheme II. Reaction Cycle Establishing the Stereochemistry of the Acetyl Ligand Migration $3a \rightarrow 4a$

showed no appreciable rearrangement or decomposition over the course of 30 min at 25 °C.

With two distinct routes to 2a, 2b, and 2c established, the stereochemistry of the rearrangement $3 \rightarrow 4$ could be probed. It was found that the chiral shift reagent Eu(Opt)¹¹ differentiated the CH₃ ¹H NMR resonances of racemic 2a, 2b, and 2c in CD₂Cl₂. Hence, the optical purity of these complexes could be readily established.

First, methyl complex (+)-(S)-8 (Scheme II), $^{18,19} > 98\%$ ee, was treated with n-BuLi/TMEDA and then acetic anhydride as was done with racemic 8 above. Levorotatory 2a ($[\alpha]^{25}_{589} = -121^{\circ}$) 19c was obtained, which was shown to be of $\geq 98\%$ ee by Eu(Opt) assay. Similar reactions using phenylacetic anhydride and benzoic anhydride gave levorotatory 2b ($[\alpha]^{25}_{589} = -430^{\circ}$) 19c and levorotatory 2c ($[\alpha]^{25}_{589} = -563^{\circ}$), 19c both of $\geq 98\%$ ee. Since these transformations occur without apparent rupture of any metal-ligand bonds, we assign the products as S enantiomers, corresponding to retention of configuration at rhenium, as shown for (-)-(S)-2a in Scheme II.

Next, the reaction of 1a with LDA was repeated with (+)-(S)-1a, $\geq 98\%$ ee. Addition of CH₃I after 6 min gave (-)-(S)-2a ($[\alpha]^{25}_{589} = -116^{\circ}$), 19c which Eu(Opt) assay showed to be of $\geq 90\%$ ee. This corresponds to retention of configuration at rhenium (Scheme II). In separate experiments, the CH₃I quench was postponed until 12 and 20 min after the addition of LDA. Subsequently isolated were (+)-(S)-1a, 20% ee, and racemic 1a, respectively.

The reaction of 1b with LDA and CH₃I was similarly repeated with (+)-(S)-1b, \geq 98% ee. This gave (-)-(S)-2b, which Eu(Opt) assay showed to be of $32 \pm 5\%$ ee. An identical experiment was conducted with (-)-(S)-1c, 94% ee. This gave (+)-(R)-2c, $32 \pm 5\%$ ee. Thus, these transformations proceed with a moderate overall degree of retention and inversion, respectively. Depending

⁽¹⁸⁾ Merrifield, J. H.; Strouse, C. E.; Gladysz, J. A. Organometallics 1982, 1, 1204.

^{(19) (}a) Absolute configurations are assigned according to the Baird/Sloan modification of the Cahn-Ingold-Prelog priority rules. ^{19d} The C_5H_5 ligand is considered to be a pseudoatom of atomic number 30, which gives the following sequence: $\eta^5 \cdot C_5H_5$, $\eta^5 \cdot C_5H_4X > PPh_3 > NO > COR$, CH_3 . In complexes with more than one chiral center, the rhenium configuration is specified first. (b) Prefixes (+) and (-) refer to rotations at 589 nm. (c) All optical rotations are in CH_2Cl_2 with c in the range of 0.2 to 0.3 mg/mL. (d) Stanley, K.; Baird, M. C. J. Am. Chem. Soc. 1975, 97, 6598. Sloan, T. E. Top. Stereochem. 1981, 12, 1.

upon the configurational stability of 4b and 4c, the rearrangement steps $3b \rightarrow 4b$ and $3c \rightarrow 4c$ may proceed with somewhat greater stereoselectivity.

III. Routes to Deprotonated Acyl Ligands. Several independent syntheses of rhenium complexes containing deprotonated acyl ligands were attempted. First, pentamethylcyclopentadienyl acetyl complex $(\eta^5-C_5Me_5)Re(NO)(PPh_3)(COCH_3)$ (10a, eq v) was prepared from (η^5 -C₅Me₅)Re(NO)(PPh₃)(CO₂CH₃) and CH₃-MgBr analogously to 1a.9 New pentamethylcyclopentadienyl

complexes were characterized as summarized in Table I. Reaction of 10a with n-BuLi (2.0 equiv) in THF was monitored by ³¹P NMR spectroscopy at -70 °C. The starting material resonance (18.6 ppm) was rapidly replaced by a new resonance at 21.8 ppm. When CH₃I (2.5 equiv) was added, this peak slowly disappeared as a resonance at 18.7 ppm grew in. In a preparative-scale experiment, propionyl complex (η^5 -C₅Me₅)Re(NO)(PPh₃)-(COCH₂CH₃) (11) was isolated in 82% yield. Accordingly, the 21.8-ppm resonance was assigned to enolate $Li^+(\eta^5-C_5Me_5)Re^ (NO)(PPh_3)(C(O^-)=CH_2)$ (12a). In a separate ³¹P NMR experiment, 12a was found to be stable at -20 °C; at higher temperatures, decomposition occurred. An authentic sample of 11 was synthesized from $(\eta^5-C_5Me_5)Re(NO)(PPh_3)(CO_2CH_3)$ and CH₃CH₂MgBr (72%).

Having established that rhenium-substituted enolate anions can be generated, we next probed their potential for the stereoselective generation of new chiral centers. Phenylacetyl complex (η^5 - $C_5Me_5)Re(NO)(PPh_3)(COCH_2C_6H_5)$ (10b, eq vi) was prepared

analogously to 10a. Its reaction with n-BuLi (2.0 equiv) was monitored by ³¹P NMR at -70 °C. The starting material resonance (17.3 ppm) was rapidly replaced by a new resonance at 25.8 ppm which was, by analogy to eq v, assigned to enolate $Li^+(\eta^5-C_5Me_5)Re(NO)(PPh_3)(C(O^-)=CHC_6H_5)$ (12b). When CH₃I (2.5 equiv) was then added, this resonance slowly disappeared as a new resonance at 21.8 ppm grew in. In a preparative-scale experiment, crystalline α -phenylpropionyl complex $(\eta^5-C_5Me_5)Re(NO)(PPh_3)(COCH(C_6H_5)CH_3)$ (13) was isolated in 72% yield. This compound appeared pure by ¹H NMR, but HPLC analysis (silica gel; both before and after recrystallization) suggested that it was a (96 ± 1) : (4 ± 1) ratio of diastereomers.

Since silyl enol ethers are often used as precursors to organic enolates, 20 we explored analogous routes to rhenium-substituted enolates. (Trimethylsilyl)acetyl complex $(\eta^5-C_5H_5)Re(NO)$ - $(PPh_3)(COCH_2Si(CH_3)_3)$ (14, eq vii) was prepared from $(\eta^5$ -

(20) (a) Colvin, E. W. "Silicon in Organic Synthesis"; Butterworths: Boston, 1981; pp 217-221. (b) Noyori, R.; Nishida, I.; Sakata, J. J. Am. Chem. Soc. 1983, 105, 1598.

C₅H₅)Re(NO)(PPh₃)(CO₂CH₃) and (CH₃)₃SiCH₂MgCl (61-68%). Thermolysis of 14 at 160 °C (eq v) gave silyl enol ether $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(C(OSi(CH_3)_3) = CH_2)$ (15; 59%) spectroscopic yield) and acetyl complex 1a in a 87:13 ratio. Complex 1a presumably formed from adventitious protic impurities; repeated attempts to eliminate this byproduct or separate it from 15 failed. The mixture was treated with the anhydrous F source $((CH_3)_2N)_3S+Si(CH_3)_3F_2$ (25 °C, 12 h), 20b,21 but in all cases only the conversion of 15 to 1a was observed. Complex 15 did not react with CH₃Li (THF) or CsF (CH₂Cl₂, THF) at room temperature.

Finally, we sought to determine if the mode of deprotonation in Scheme I might be altered by a weaker, more selective base.²² Reaction of 1b with Li⁺⁻N(Si(CH₃)₃)₂ (3.2 equiv) was sluggish at 0 °C. After 16 h, CH₃OSO₂CF₃ was added (eq viii). Workup gave α -phenylpropionyl complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)-(COCH(C_6H_5)CH_3)$ (16) in 53% yield. This compound appeared pure by ¹H NMR, but HPLC analysis (silica gel; both before and after recrystallization) indicated that it was a (98 ± 1) : (2 ± 1) ratio of diastereomers. With use of methodology that has been communicated¹² and will be reported in detail elsewhere,²³ an authentic sample of (SS, RR)-16^{19a} was prepared. The major product of eq viii was on this basis assigned as (SR,RS)-16

In a separate experiment, eq viii was monitored by ³¹P NMR. The generation of intermediate enolate $Li^+(\eta^5-C_5H_5)Re(NO)$ - $(PPh_3)(C(O^-)=CHC_6H_5)$ (17, 20.1 ppm) was complete after 16 h at 0 °C or 4 h at 25 °C. A THF solution of 17 was kept at room temperature for 2 days. Only minor decomposition occurred, and no evidence (31P NMR; CH3OSO2CF3 quench) for the rearranged anion 4b was found. When acetyl complex 1a was treated with $Li^{+-}N(Si(CH_3)_3)_2$ as in eq viii, only slow decomposition occurred. No evidence for the generation of an enolate anion was noted by ³¹P NMR.

Discussion

I. Site of Deprotonation. To rationalize the above chemistry, it is helpful to first review the known acid/base chemistry of η^5 -C₅H₅ and acyl ligands. The deprotonation of η^5 -C₅H₅ ligands by RLi reagents has abundant precedent.²⁴ For example, ferrocene is readily converted to the dilithio derivative $(\eta^5-C_5H_4Li)_2$ Fe and even more extensively lithiated species.²⁴ However, quantitative studies of the rates and equilibria of such reactions are scarce.

Setkina and co-workers used rates of H/D exchange in $C_2H_5O^-Na^+/C_2H_5OD/benzene$ at 100 °C to estimate that the η^5 - C_5H_5 protons of $(\eta^5$ - $C_5H_5)$ Fe(CO)₂(C₆H₅) and $(\eta^5$ -C₅H₅)Fe- $(CO)_2(CH_2C_6H_5)$ have pK_a 's (ethanol/benzene) of 29 and 30, respectively.²⁵ In a recent study, we bounded the pK_a of the η^5 -C₅H₅ protons of $(\eta^5$ -C₅H₅)Re(NO)(PPh₃)(CH₂CN) as several units greater than the pK_a of CH_3CN in $THF.^3$ The pK_a of CH₃CN is 31.5 in H₂O and 31.3 in Me₂SO.²⁶ Since CH₂CN is not as electron withdrawing as COR, 27 the η^5 -C₅H₅ protons

⁽²¹⁾ Middleton, W. J. Org. Syn. 1985, 64, 221.
(22) (a) Fraser, R. R.; Mansour, T. S.; Savard, S. J. Org. Chem. 1985, 50,
3232. (b) Fraser, R. R.; Mansour, T. S. Ibid. 1984, 49, 3443.
(23) Bodner, G. S.; Smith, D. E.; Hatton, W. G.; Georgiou, S.; Heah, P. C.; Hutchinson, J. P.; Rheingold, A. L.; Gladysz, J. A., manuscript in prep-

aration.

(24) Walts, W. E. In "Comprehensive Organometallic Chemistry"; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol 8, pp 1040-1044.

(25) (a) Orlova, T. Yu.; Setkina, V. N.; Sizoi, V. F.; Kursanov, D. N. J. Organomet. Chem. 1983, 252, 201. (b) Orlova, T. Yu.; Setkina, V. N.; Kursanov, D. N. Ibid. 1984, 267, 309.

(26) Bordwell, F. G.; Fried, H. E. J. Org. Chem. 1981, 46, 4327.

(27) Hine, J. "Structural Effects on Equilibria in Organic Chemistry"; John Wiley & Sons: New York, 1975; Table 3-1

John Wiley & Sons: New York, 1975; Table 3-1.

should be more acidic in 1 than in $(\eta^5-C_5H_5)Re(NO)(PPh_3)$ - (CH_2CN) .

To our knowledge, the acidities of acyl ligand protons in L_nMCOCH_2R complexes have not been quantitatively studied. The p K_a 's should, like those of the α -carbonyl protons in organic XCOCH₂R compounds, depend upon the electronic properties of the L_nM moiety. On the basis of IR $\nu_{C==0}$ and chemical reactivity, most L_nM substituents appear to donate at least as much electron density into a carbonyl group as R₂N substituents. 9,28 Hence, metal acyl complexes should be among the more electron rich and therefore less acidic $XCOCH_2R$ compounds. The p K_a of CH₃CON(CH₃)₂ is, depending upon solvent, 31-34.²⁶ We believe this to be a reasonable estimate for the pK_a of the acetyl protons of 1a. Hence, the η^5 -C₅H₅ protons of 1a are likely about as acidic as the acetyl protons. However, Bordwell has shown that α -phenyl substitution enhances amide acidity by ca. 7 p K_a units.26 Therefore, the methylene protons of phenylacetyl complex 1b should be considerably more acidic than the η^5 -C₅H₅ protons.

In THF, the p K_a of HN(Si(CH₃)₃)₂ is 25.8 and the p K_a of HN(CH(CH₃)₂)₂ is 35.7.²² Hence, the conjugate base of the latter, LDA, is more basic and less selective. Its reaction with phenylacetyl complex 1b, which gives η^5 -C₅H₄Li complex 3b (Scheme I), is clearly under kinetic control. Subsequent rapid acyl migration precludes attainment of equilibrium. The weaker, more selective, base Li⁺⁻N(Si(CH₃)₃)₂ discriminates, in a sluggish reaction (eq viii), for the more acidic phenylacetyl protons. That the resulting enolate 17 shows no tendency to rearrange to 3b (or 4b) is further evidence for the greater acidity of the phenylacetyl protons.

Why then do the η^5 -C₅H₅ protons of **1a** and **1b** exhibit greater kinetic acidity than the acyl protons? There is an obvious statistical factor, and a possible steric factor. More importantly, however, it is well-known that for C-H bonds of comparable pK_a , deprotonation to give a resonance-stabilized carbanion is slow relative to deprotonation to give a localized carbanion.²⁹ The literature explanations for this effect²⁹ are easily applied to 1a and 1b. In the acyl ligand deprotonation $1b \rightarrow 17$ (eq viii), rehybridization and charge delocalization to oxygen must occur. Hence, the full thermodynamic stability of the carbanion and the stabilizing influence of solvation^{29d} will not be reflected until later in the reaction coordinate. The η^5 -C₅H₅ ligand deprotonation 1b → 3b gives, however, a localized carbanion for which no rehybridization is required.^{29b} Hence, the thermodynamic stability of the carbanion will be reflected earlier in the reaction coordinate, resulting in a lower transition-state energy.

A similar situation has been found with iron acetyl complex $(\eta^5-C_5H_5)$ Fe(CO)₂(COCH₃). Reaction with LDA and then CH₃I gives a migration product derived from η^5 -C₅H₅ ligand deprotonation, (n⁵-C₅H₄COCH₃)Fe(CO)₂(CH₃); reaction with Li⁺⁻N(Si(CH₃)₃)₂ and then CH₃I gives a product derived from acetyl ligand deprotonation, $(\eta^5 - C_5H_5)Fe(CO)_2(COCH_2CH_3)$. ^{2d,0} However, with related complexes $(\eta^5-C_5H_5)Fe(CO)(PPh_3)$ -(COCH₂R), bases LDA and n-BuLi give only acyl ligand deprotonation at -78 °C.2b-e,30a

When the η^5 -C₅H₅ ligand in **1a** and **1b** is replaced by η^5 -C₅Me₅, Scheme I chemistry is blocked and acyl ligand deprotonation is observed. However, the deprotonation of η^5 -C₅Me₅ ligands is precedented. 30b,c For example, when dication $[(\eta^5-C_5Me_5)Co-$

 $(PMe_3)(CNR)$ ²⁺ is treated with $CD_3NO_2/(C_2H_5)_3N$, H/D exchange occurs.

II. Migration Chemistry. A number of ligand migrations to coordinated η⁵-C₅H₄Li have now been described.^{7,16} The first, which was reported by Graham, was the conversion of Ge(C₆H₅)₃ complex $(\eta^5 - C_5H_4Li)Mo(CO)_3(Ge(C_6H_5)_3)$ to $Li^+[(\eta^5 - C_5H_4Ge (C_6H_5)_3)Mo(CO)_3]^{-.7a}$ Berryhill has observed the rearrangement of $Si(CH_3)_3$ complex $(\eta^5-C_5H_4Li)Fe(CO)_2Si(CH_3)_3$ to $Li^+[(\eta^5-C_5H_4Si(CH_3)_3)Fe(CO)_2]^{-7c,e}$ A similar reaction has been reported by Malisch. 7d As noted above, acyl migrations of (η⁵-C₅H₄Li)Fe(CO)₂(COR) intermediates have been described.^{2d,0} An interesting and likely related rearrangement occurs when cationic acyl complexes $[(\eta^5-C_5H_5)Co(PMe_3)_2(COAr)]^+$ are treated with DBU;11 neutral arylcyclopentadienyl complexes $(\eta^5-C_5H_4Ar)Co(PMe_3)(CO)$ are subsequently isolated. These migrations provide new and potentially useful approaches to functionally substituted cyclopentadienyl complexes.31

The conversion of formyl complex 1d to 2d constitutes the first stoichiometric carbon-carbon bond-forming reaction of a η^1 -CHO ligand. 10b Many metal-catalyzed CO/H2 reactions involve intermediate formyl complexes, but further reduction is generally believed to be required before formation of a >C₁ species.³² Recently, formyl complexes have been shown to be good hydrogen atom donors.33 Thus, the small amount of apparent crossover product from the coreaction of 1d and $1d-d_6$ with LDA might be radical initiated and not due to intermolecularity in the migration quenched with CH₃OSO₂CF₃ may be due to reversible methylation of the formyl moiety.

Migrations of ligands to coordinated η^5 -C₅H₅ have also been observed, but these will not be detailed except to note that migration to η^5 -C₅H₄Li are considerably faster. For example, hydride migration to η^5 -C₅H₅ in $(\eta^5$ -C₅H₅)Re(NO)(PPh₃)(H) requires (as assayed by isotope scrambling) 80-120 °C,34 whereas hydride migration to η^5 -C₅H₄Li in $(\eta^5$ -C₅H₄Li)Re(NO)(PPh₃)(H) occurs at -32 °C.16a

It is tempting to suggest that ligand migration to coordinated η⁵-C₅H₄Li might be a fairly general class of organometallic rearrangements. Contrast Scheme I with the key steps of the Wittig rearrangement shown in eq ii. In Scheme I an organometallic ligand on rhenium is deprotonated "adjacent" to the metal; in eq ii, an alkyl ligand on oxygen is deprotonated adjacent (α) to the oxygen. In Scheme I, an acyl ligand migrates to give a rhenium-centered anion; in eq ii, an alkyl ligand migrates to give an oxygen-centered anion. We do not wish to imply that the mechanisms of these transformations need be similar. Indeed, in contrast to $3 \rightarrow 4$, Wittig-type rearrangements can be intermolecular. 4,35 However, both rearrangements have the related thermodynamic driving force of converting a carbanion to a heteroanion better able to accommodate the negative charge. Some conceptually related 1,2-ligand migrations involving transition metals have recently been analyzed by Hoffmann.

The results in eq iv and Scheme II show that benzyl and methyl ligands do not migrate to η^5 -C₅H₄Li. In single run experiments, we have also treated isopropyl complex $(\eta^5-C_5H_5)Re(NO)$ -(PPh₃)(CH(CH₃)₂)³⁶ and allyl complex (η⁵-C₅H₅)Re(NO)-(PPh₃)(CH₂CH=CH₂)^{16a} with n-BuLi/TMEDA. 16c In both cases, (n⁵-C₅H₄Li)Re(NO)(PPh₃)(R) species were cleanly gen-

⁽²⁸⁾ Angelici, R. J. Acc. Chem. Res. 1972, 5, 335.
(29) (a) Bordwell, F. G.; Boyle, W. J., Jr. J. Am. Chem. Soc. 1975, 97, 3447.
(b) Kresge, A. J. Acc. Chem. Res. 1975, 8, 354.
(c) Hine, J. Adv. Phys. Org. Chem. 1977, 15, 1.
(d) Bernasconi, C. F. Pure Appl. Chem. 1982, 54, 325

^{(30) (}a) Note Added in Proof: In an important recent communication, S (30) (a) Note Added in Proof: In an important recent communication, S. G. Davies and co-workers report that at higher temperatures (-40 to 20 °C) n-BuLi can effect η⁵-C₅H₅ ligand deprotonation of (η⁵-C₅H₅)Fe(CO)-(PPh₃)(COCH₂R) complexes. This is followed by an acyl ligand migration that is stereospecific at iron. They also find analogous rearrangements involving -CO₂R ligands and (η⁵-C₅H₅)Ru(CO)(PPh₃)(COCH₂R) complexes: Abbott, S.; Baird, G. J.; Davies, S. G.; Dordor-Hedgecock, I. M.; Maberly, T. R.; Walker, J. C.; Warner, P. J. Organomet. Chem. 1985, 289, C13. (b) Werner, H.; Heisen, B.; Klingert, B.; Dölfel, R. J. Organomet. Chem. 1982, 240, 179. (c) Werner, H.; Crisp, G. T.; Jolly, P. W.; Kraus, H. J.; Krüger, C. Organometallics 1983, 2, 1369. C. Organometallics 1983, 2, 1369.

⁽³¹⁾ Macomber, D. W.; Hart, W. P.; Rausch, M. D. Adv. Organomet.

Chem. 1982, 21, 1.
(32) (a) Rofer-DePoorter, C. K. Chem. Rev. 1981, 81, 447. (b) Gladysz, J. A. Adv. Organomet. Chem. 1982, 20, 1. (c) Dombek, D. B. Adv. Catal. 1983, 32, 325. (d) Henrici-Olivé, G.; Olivé, S. J. Mol. Catal. 1983, 18, 367.

^{(33) (}a) Narayanan, B. A.; Amatore, C.; Casey, C. P.; Kochi, J. K. J. Am. Chem. Soc. 1983, 105, 5351. (b) Sumner, C. E.; Nelson, G. O. Ibid. 1984, 106, 132. (c) Narayanan, B. A.; Amatore, C. A.; Kochi, J. K. Organometallics 1984, 3, 802. (d) Paonessa, R. S.; Thomas, N. C.; Halpern, J. J. Am. Chem. Soc. 1985, 107, 4333.

⁽³⁴⁾ Merrifield, J. H.; Gladysz, J. A. Organometallics 1983, 2, 782.
(35) Lansbury, P. T.; Pattison, V. A. J. Org. Chem. 1962, 27, 1933.
Lansbury, P. T.; Patterson, V. A. J. Am. Chem. Soc. 1962, 84, 4295.
(36) Kiel, W. A.; Lin, G.-Y.; Bodner, G. S.; Gladysz, J. A. J. Am. Chem.

Soc. 1983, 105, 5804.

Scheme III. Three Possible Mechanisms for the Acyl Migration $3 \rightarrow 4$

erated, as assayed by ³¹P NMR. However, no rearrangement occurred upon warming to room temperature.

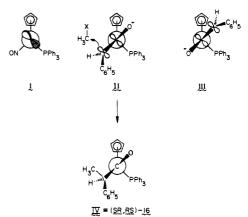
In Scheme II, we establish that the transformation $1a \rightarrow 2a$ proceeds with ≥90% retention of configuration at rhenium. We then make the logical assumptions that the deprotonation step $1a \rightarrow 3a$ and the methylation step $4a \rightarrow 2a$ proceed with retention. From this, we conclude that the migration step $3a \rightarrow 4a$ proceeds with ≥90% retention. However, it is in one sense surprising that any stereoselectivity is observed at all. In general, d8 complexes of the type (η⁵-C₅H₅)ML₂ are planar.³⁷ Although the location of the lithium in 4a is uncertain, 4a is likely (if it does not already exist as such) in facile equilibrium with a planar d⁸ species. Accordingly, our CH₃I trapping data indicate that 4a is of very limited configurational stability at -78 °C. The rearrangements 3b \rightarrow 4b and 3c \rightarrow 4c appear less stereoselective based upon CH₃I trapping; however, this may be due to the configurational instability of 4b and 4c.

It is surprising that 3c → 4c proceeds with a different stereochemistry (inversion) than $3a \rightarrow 4a$ and $3b \rightarrow 4b$. This result has been reproduced several times and is based upon a stereochemical cycle analogous to the one in Scheme II. This result is also supported by an independent stereochemical cycle involving conversion of optically active 2c to optically active benzyl complex $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH_2C_6H_5)$ —both of which can be prepared from a common starting material, optically active $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(CO)]^+BF_4^{-9}$ While we have no explanation for this differing behavior at present, it is not difficult to visualize. Retention corresponds to migration of the acyl ligand to the η^5 -C₅H₄Li coordination site, whereas inversion corresponds to η^5 -C₅H₄Li insertion into the acyl coordination site.

We have previously noted that the absolute configuration of $(\eta^5-C_5H_5)$ Re(NO)(PPh₃)(X) compounds correlates in nearly all cases with the sign of rotation at >500 nm. 9,18,38 Interestingly, this is strongly reversed for 2a-c. These complexes also differ from 1a-d and other $(\eta^5-C_5H_5)Re(NO)(PPh_3)(X)$ complexes in being readily amenable to chiral NMR shift reagent ee assay.

III. Migration Mechanism. From the above data, it can be seen that the ligands which migrate to η^5 -C₅H₄Li most readily (GeR₃, SiR₃, COR) have low-lying acceptor orbitals. We delineate three possible classes of mechanisms of the migration step in Scheme III.

In the first mechanism a, the acyl ligand is directly transferred to the lithiated carbon. This could occur via intermediate 18 by an addition/elimination mechanism. However, a concerted migration is also conceivable.39


In the second mechanism b, initial η^5 -C₅H₄Li $\rightarrow \eta^1$ -C₅H₄Li isomerization $(3 \rightarrow 19)$ occurs. We suggest that the Li substituent may facilitate this conversion, as the resulting ligand will have considerable aromatic cyclopentadienide character. Indeed, facile proton loss from η^1 -C₅H₅ ligands, which would give a similar cyclopentadienide moiety, has been previously proposed in several reactions.40

In the third mechanism c, acyl migration occurs to a protonated η^5 -C₅H₄Li carbon (3 \rightarrow 21). A 1,5 prototropic shift (or series thereof) would then give 22, which could dissociate Li+ to give 4. Other examples of such ligand migrations/prototropic shifts are known.34,41

Variations of each of the above mechanisms can be easily generated. For example, the acyl oxygen might bond to the coordinatively unsaturated metal in $19-\overline{22}$. Some steps $(3 \rightarrow 19,$ $3 \rightarrow 21$) may be reversible.

Unfortunately, we are unable to rigorously distinguish among mechanisms a-c at this time. We believe that (a) is most likely to be stereospecific at rhenium, and Berryhill has proposed a similar mechanism for Si(CH₃)₃ migration to C₅H₄Li.^{7e} However, the unusual⁴⁰ apparent migratory aptitude acetyl > formyl is difficult to rationalize. Mechanism c is unique in that the acyl group migrates to a carbon other than the one which is lithiated. However, our attempts to prepare a suitably labeled and reactive test substrate have not yet been successful.

IV. Generation of Enolate Anions and Stereochemistry of Alkylation. It is possible to deduce, with a few logical assumptions, the stereochemistry of enolate anion 17 (eq viii) from the stereochemistry of its methylation product (SR,RS)-16. First, note that 17 can be considered a vinyl complex. The C=C π bond is cross conjugated to a basic lone pair on rhenium and the oxygen lone pairs. The former is a d-type orbital—equivalent to the HOMO of the $(\eta^5-C_5H_5)Re(NO)(PPh_3)^+$ fragment—and is shown in I below. 17 The E geometric isomer of 17 is shown in II and III below in Re- C_{α} conformations in which the C=C bond is conjugated with this d orbital. We have previously shown for other vinyl rhenium complexes that the conformation corresponding to III, which is likely less stable on steric grounds, is far less reactive toward electrophiles. 12,23,42 Because of the oxygen cross conjugation, the reactive Re-C_a conformation is unlikely to correspond exactly to II; it would be easy to visualize, for example, the C=C bond of II in a more horizontal orientation.

Regardless of the exact Re- C_{α} orientation, the electrophile would be expected to attack the C=C bond opposite to the bulky PPh3 ligand. Both C_{β} electrophilic attack upon analogous α methoxyvinyl complexes $(\eta^5-C_5H_5)Re(NO)(PPh_3)(C(OCH_3)=CHR)^{12,23}$ and C_{α} nucleophilic attack upon alkylidene complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(=CHR)]^+PF_6^{-17,36}$ have been shown

⁽³⁷⁾ Albright, T. A.; Burdett, J. K.; Whangbo, M. H. "Orbital Interactions Chemistry"; John Wiley & Sons: New York, 1985; pp 369-372.
(38) Merrifield, J. H.; Fernández, J. M.; Buhro, W. E.; Gladysz, J. A.

Inorg. Chem. 1984, 23, 4029.

⁽³⁹⁾ Bushy, R. J.; Jones, D. W. J. Chem. Soc., Chem. Commun. 1979, 688.

⁽⁴⁰⁾ Slocum, D. W.; Beach, D. L.; Ernst, C. R.; Fellows, R.; Moronski, M.; Conway, B.; Bencini, J.; Siegel, A. J. Chem. Soc., Chem. Commun. 1980, 1043.

^{(41) (}a) Colomer, E.; Corriu, R. J. P.; Vioux, A. J. Organomet. Chem. 1984, 267, 107. (b) Knox, G. R.; Nutley, M.; Pauson, P. L.; Toma, S.; Watts, W. E.; Elder, P. A.; Griffiths, R. J. Chem. Res., Miniprint 1981, 1901-1918.
(42) Hatton, W. G.; Gladysz, J. A. J. Am. Chem. Soc. 1983, 105, 6157.

to occur anti to PPh₃. It then follows that in order to obtain (SR,RS)-16 (IV), 17 must be an E geometric isomer.

In elegant related work, S. G. Davies and L. Liebeskind have found that iron acyl complexes $(\eta^5-C_5H_5)Fe(CO)(PPh_3)$ -(COCH₂R) can likewise be deprotonated to give E-enolates and that these undergo highly stereoselective alkylation. 2c,e,k,p This system apparently does not suffer the disadvantage of competing -C₅H₅ ligand deprotonation and involves a less expensive metal.

The stereochemical features of the (pentamethylcyclopentadienyl)rhenium enolate chemistry in eq vi are more difficult to discern. From trends in NMR spectra, it is tempting to conclude that the major diastereomer of 13 produced is (SS,RR)opposite to the overall stereochemistry of eq viii. For example, in (SR,RS)-16, the methine hydrogen (δ 4.08) is upfield from the one in (SS,RR)-16 (δ 4.29) and the methyl resonance is downfield $(\delta 1.49)$ from the one in (SS,RR)-16 $(\delta 0.61)$. In the major diastereomer of 13, the methine hydrogen (δ 4.07) is downfield from the one in the minor diaster eomer (δ 3.82) and the methyl resonance (δ 0.36) is *upfield* from the one in the minor diastereomer (δ 1.40). Similar arguments have previously been used by Davies to assign relative configurations in iron acyl complexes $(\eta^5-C_5H_5)$ Fe(CO)(PPh₃)(COCH(CH₃)R).^{2i,k,p} If (SS,RR)-13 is the major product of eq vi, then (if the same model used for eq vii is applicable) either the intermediate enolate is a Z isomer or electrophilic attack occurs opposite the η^5 -C₅Me₅ ligand. Additional crystallographic and NMR studies will be needed to resolve these questions.

Carbon-to-oxygen 1,3-silatropic shifts are common in organic compounds.⁴³ The preparation of silvl enol ether 15 (eq vii) constitutes, to our knowledge, the first carbon-to-oxygen silatropic shift in a metal coordination sphere.44 Although 15 did not prove to be a viable enolate precursor, we suggest that the silyl enol ether derived from 1b could likely be converted to enolate 17.

Conclusion

From this and related¹⁻³ studies, it is evident that organometallic compounds are providing a new frontier for carbanion chemistry. The deprotonation of C-H bonds in coordinated ligands is of mechanistic interest and gives carbanions that are synthetically useful and in some cases capable of novel rearrangement chemistry. It can be anticipated that research activity in this area will continue to dramatically increase.

Experimental Section

General. All reactions were carried out under a dry N2 atmosphere unless noted. IR spectra were recorded on a Perkin Elmer 1500 (FT) spectrometer. NMR spectra were recorded on Varian SC-300 (¹H, ¹³C) and FT-80 (31P) spectrometers as outlined in Table I. Optical rotations were measured on a Perkin Elmer 141 polarimeter. Mass spectra were obtained on a VG 770 spectrometer. Microanalyses were conducted by Galbraith and Schwarzkopf Laboratories.

Solvents were purified as follows: THF and benzene, distilled from Na/benzophenone; hexanes and toluene, distilled from sodium; CH₂Cl₂, distilled from P2O5; CHCl3 (spectrophotometric grade), degassed with N₂; CD₂Cl₂, distilled from CaH₂ or P₂O₅ and stored over activated 4A molecular sieves; CH₃OH, distilled from Mg.

Base LDA was prepared from n-BuLi and HN(CH(CH₃)₂)₂ in hexane⁴⁵ and standardized with 1,3-diphenyl-2-propanone tosylhydrazone.⁴⁶ Base n-BuLi was obtained from Aldrich and standardized⁴⁷ before use. The following were obtained from Aldrich or Alfa and used without standardization: CH₃MgBr, CH₃CH₂MgBr, C₆H₅CH₂MgBr, (CH₃)₃-SiCH₂MgCl, Li⁺-N(Si(CH₃)₃)₂. TMEDA was obtained from Aldrich and distilled from CaH2

Electrophiles were obtained and purified as follows: CH3I (Aldrich), distilled from P₂O₅ and stored over Cu at 0 °C; CH₃OSO₂CF₃ (Aldrich),

(43) Reference 6, Table 4.

distilled from CaH₂; Br₂ (Aldrich), used without purification; (CH₃C-O)2O (Aldrich), stored over quinoline and fractionally distilled; (C6H5-CO)2O (Sigma), dissolved in benzene, washed with NaHCO3, and recrystallized from benzene/petroleum ether; (C₆H₃CH₂CO)₂O, prepared by a literature procedure.⁴⁸ Eu(Opt) (Alfa) and CH₃ONa (MCB) were used as received.

Preparation of $(\eta^5-C_5H_4COCH_3)Re(NO)(PPh_3)(CH_3)$ (2a). Schlenk flask was charged with (η⁵-C₅H₅)Re(NO)(PPh₃)(COCH₃) (1a, 70.8 mg, 0.121 mmol), THF (6 mL) and a stir bar. The resulting yellow solution was cooled to -78 °C and LDA (600 μ L, 0.43 M in hexanes, 0.258 mmol) was slowly added with stirring. The solution turned deep red, and after 20 min, CH₃I (20 μ L, 0.321 mmol) was added. The solution turned orange and was stirred for 30 min at -78 °C. The solvent was then removed under oil pump vacuum at 0 °C. The major product was isolated by silica gel column chromatography with CH₂Cl₂. The crude product was crystallized from layered acetone/hexanes at -24 °C. This gave red prisms of 2a (55.3 mg, 0.092 mmol, 76%), mp 160-162.5 °C dec. Anal. Calcd for C₂₆H₂₅O₂NPRe: C, 52.00; H, 4.17. Found: C, 51.90; H, 4.37.

Preparation of $(\eta^5-C_5H_4COCH_2C_6H_5)Re(NO)(PPh_3)(CH_3)$ (2b). Complex $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(COCH_2C_6H_5)$ (1b, 61.4 mg, 0.093) mmol), 9 LDA (600 μ L, 0.43 M in hexanes, 0.258 mmol), and CH₃I (20 μ L, 0.321 mmol) were reacted as described in the preparation of 2a. The solvent was then removed under oil pump vacuum at 0 °C. The major product was isolated by silica gel column chromatography with 4:1 (v/v)hexanes/acetone. The crude product was crystallized from layered CH₂Cl₂/hexanes. This gave red prisms of 2b·(CH₂Cl₂)_{0.8±0.1} (49.3 mg, 0.073 mmol, 79%), mp 218.5–220 °C dec. Integration of a ¹H NMR spectrum confirmed a $(CH_2Cl_2)_{0.8\pm0.1}$ solvate. When crystals of **2b**· $(CH_2Cl_2)_{0.8\pm0.1}$ were dissolved in CHCl₃ and the solvent removed by rotary evaporation, unsolvated 2b was obtained as an orange powder. Anal. Calcd for C₃₂H₂₉O₂NPRe·(CH₂Cl₂)_{0.75}: C, 53.13; H, 4.12. Calcd for C₃₂H₂₉O₂NPRe·(CH₂Cl₂)_{0.8}: C, 52.90; H, 4.11. Found: C, 53.23; H, 4.43.

Preparation of $(\eta^5-C_5H_4COC_6H_5)Re(NO)(PPh_3)(CH_3)$ (2c). Complex $(\eta^5 - C_5 H_5) \text{Re(NO)(PPh}_3) (COC_6 H_5)$ (1c, 97.2 mg, 0.150 mmol), LDA (880 μ L, 0.43 M in hexanes, 0.378 mmol), and CH₃I (40 μ L, 0.642 mmol) were reacted as described in the preparation of 2a. The solvent was then removed under oil pump vacuum at 0 °C. The major product was isolated by silica gel column chromatography with CH₂Cl₂. The crude product was crystallized from layered CH_2Cl_2 /hexanes. This gave red prisms of **2c** (49.9 mg, 0.075 mmol, 50%), mp 190.5–193.0 °C dec. Anal. Calcd for $C_{31}H_{27}O_2NPRe$: C, 56.19; H, 4.08. Found: C, 56.40; H, 4.25.

Preparation of (η⁵-C₅H₄CHO)Re(NO)(PPh₃)(CH₃) (2d). A Schlenk flask was charged with $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CHO)$ (1d, 88.8 mg, 0.155 mmol), ¹³ THF (10 mL), and a stir bar. The resulting yellow solution was cooled to -78 °C and LDA (490 $\mu L,\,0.60$ M in hexanes, 0.294 mmol) was slowly added with stirring. The solution turned deep red, and after 40 min, CH₃OSO₂CF₃ (45 µL, 0.398 mmol) was added. The solution turned orange and was stirred for 35 min at -78 °C. The solvent was removed under oil pump vacuum at room temperature. The major product was isolated by silica gel column chromatography with CH₂Cl₂. The crude product was diffusion crystallized from CH₂Cl₂/ pentane. This gave red needles of 2d (62.1 mg, 0.106 mmol, 68%), mp 133.5-135 °C dec. Anal. Calcd for C₂₅H₂₃NO₂PRe: C, 51.19; H, 3.92. Found: C, 51.19; H, 3.96.

Preparation of $(\eta^5 - C_5H_4COCH_2C_6H_5)Re(NO)(PPh_3)(Br)$ (5). Complex 1b (61.8 mg, 0.093 mmol), LDA (350 μ L, 0.40 M in hexanes, 0.140 mmol), and Br₂ (10 μ L, 0.195 mmol) were reacted as described in the preparation of 2b. The major product was isolated by silica gel column chromatography with CH₂Cl₂. The crude product was crystallized from layered CH₂Cl₂/hexanes. This gave red plates of 5 (40.0 mg, 0.054 mmol, 58%), mp 210-211.5 °C dec. Anal. Calcd for C₃₁H₂₆BrO₂NPRe: C, 50.20; H, 3.51. Found: C, 50.13; H, 3.60.

Preparation of $(\eta^5-C_5H_4CH_3)Re(NO)(PPh_3)(CH_2C_6H_5)$ (7). Schlenk flask was charged with $(\eta^5\text{-}\text{C}_5\text{H}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{CH}_2\text{C}_6\text{H}_5)$ (62.1 mg, 0.098 mmol), ¹⁷ THF (8 mL), and a stir bar. The resulting orange solution was cooled to -24 °C and *n*-BuLi (350 μ L, 0.56 M in hexane, 0.196 mmol) was added with stirring. The solution slowly turned a dark orange color, and after 1.5 h, CH₃I (12 μ L, 0.196 mmol) was added. The reaction was stirred for an additional 20 min, and then solvent was removed under oil pump vacuum at 0 °C. The major product was isolated by silica gel column chromatography with 1:1 (v/v) The crude product was crystallized from layered CH₂Cl₂/hexanes. CH_2Cl_2 /hexanes. This gave orange plates of 7 (46.8 mg, 0.072 mmol, 74%), mp 180.5–184 °C. Anal. Calcd for $C_{31}H_{29}NOPRe$: C, 57.41; H, 4.47. Found: C, 57.44; H, 4.67.

⁽⁴⁴⁾ For other silatropic shifts in organometallic compounds, see: Brinkman, K. C.; Gladysz, J. A. *Organometallics* 1984, 3, 1325.
(45) House, H. O.; Phillips, W. V.; Sayer, T. S. B.; Yau, C.-C. J. Org.

Chem. 1978, 43, 700.

⁽⁴⁶⁾ Lipton, M. F.; Sorensen, C. M.; Sadler, A. C.; Shapiro, R. H. J. Organomet. Chem. 1980, 186, 155.

⁴⁷⁾ Silveira, A., Jr.; Bretherick, H. D., Jr.; Negishi, E. J. Chem. Educ. 1979, 56, 560.

Preparation of 2a from $(\eta^5\text{-}C_5\text{H}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{CH}_3)$. A Schlenk flask was charged with $(\eta^5\text{-}C_5\text{H}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{CH}_3)$ (64.5 mg, 0.116 mmol), ¹³ THF (7 mL), and a stir bar. The resulting orange solution was cooled to -78 °C. Then TMEDA (20 μ L, 0.133 mmol) followed by *n*-BuLi (125 μ L, 2.4 M in hexane, 0.300 mmol) were added. The solution was stirred for 20 min and then (CH₃CO)₂O (31 μ L, 0.329 mmol) was added. The reaction was transferred to a -24 °C bath. After 25 min, solvent was removed under oil pump vacuum at room temperature. The products were isolated by silica gel column chromatography in CH₂Cl₂. This gave starting material (45 mg, 0.081 mmol, 70%) and 2a (8 mg, 0.013 mmol, 38% based upon starting material consumed).

Preparation of (-)-(S)-2a from (+)-(S)-(η^5 -C₅H₅)Re(NO)(PPh₃)-(CH₃). A Schlenk flask was charged with (+)-(S)-(η^5 -C₅H₅)Re(NO)(PPh₃)(CH₃) (5.5 mg, 0.010 mmol, >98% ee), ¹⁸ THF (4 mL), and a stir bar. The resulting orange solution was cooled to -78 °C. Then TMEDA (4 μ L, 0.026 mmol) followed by n-BuLi (9 μ L, 2.4 M in hexane, 0.021 mmol) were added. The solution was stirred for 10 min and then (CH₃CO)₂O (2.5 μ L, 0.027 mmol) was added. The reaction mixture was warmed to -24 °C. After 15 min, solvent was removed under oil pump vacuum at room temperature. The products were isolated by silica gel column chromatography in CH₂Cl₂. This gave starting material (1.0 mg) and (-)-(S)-2a; $[\alpha]^{25}_{589} = -121^{\circ}$. Addition of Eu(Opt) established, as assayed by the COCH₃ ¹H NMR resonances, the optical purity of this material as \geq 98% ee.

Preparation of (-)-(S)-2a from (+)-(S)-1a. A Schlenk flask was charged with (+)-(S)-1a (20.0 mg, 0.034 mmol, >98% ee), THF (4 mL), and a stir bar. The resulting yellow solution was cooled to -78 °C and LDA (88 μ L, 0.43 M in hexanes, 0.038 mmol) was added. After 6 min, CH₃I (3.5 μ L, 0.056 mmol) was added. The orange solution was stirred for 5 min at -78 °C. The solvent was removed under oil pump vacuum at -24 °C, and (-)-(S)-2a, $[\alpha]^{25}_{589} = -116^{\circ}$, was isolated by silica gel column chromatography in CH₂Cl₂. Optical purity (\geq 90% ee) was assayed with Eu(Opt) as described above.

Preparation of (-)-(S)-2b from (+)-(S)-(η^5 -C₅H₅)Re(NO)(PPh₃)-(CH₃). A Schlenk flask was charged with (+)-(S)-(η^5 -C₅H₅)Re(NO)(PPh₃)(CH₃) (36.8 mg, 0.066 mmol), THF (6 mL), and a stir bar. The resulting orange solution was cooled to -78 °C. Then TMEDA (16 μ L, 0.106 mmol) followed by n-BuLi (60 μ L, 2.4 M in hexane, 0.144 mmol) were added. The solution was stirred for 1 h and then (C₆H₅C-H₂CO)₂O (58.6 mg, 0.231 mmol) was added. The reaction was warmed to -24 °C. After 20 min, solvent was removed under oil pump vacuum at room temperature. The products were isolated by silica gel column chromatography in CH₂Cl₂. This gave (+)-(S)-(η^5 -C₅H₅)Re(NO)-(PPh₃)(CH₃) (26.6 mg, 0.048 mmol) and (-)-(S)-2b (6.2 mg, 0.009 mmol, 50% based upon starting material consumed), [α]²⁵₅₈₉ = -430° . Addition of Eu(Opt) established, as assayed by the ReCH₃ ¹H NMR resonances, the optical purity of this material to be >98% ee.

Preparation of (+)-(S)-1b. A Schlenk flask was charged with (+)-(S)-(η^5 -C₅H₅)Re(NO)(PPh₃)(CO₂CH₃) (101.3 mg, 0.168 mmol, >98% ee), ¹⁸ CH₂Cl₂ (5 mL), and a stir bar. The resulting yellow solution was cooled to -24 °C, and C₆H₅CH₂MgCl (150 μ L, 2.0 M in THF, 0.300 mmol) was added. The reaction was stirred for 15 min, and solvent was then removed under oil pump vacuum. The resulting yellow solid was extracted with acetone, and the extract was filtered through a plug of silica gel. The filtrate was concentrated to ca. 4 mL and 5 mL of hexanes was added. Yellow needles of (+)-(S)-1b formed over the course of 16 h at -24 °C and were collected by filtration and vacuum dried (49.0 mg, 0.074 mmol, 44%), mp 232-234 °C; [α]²⁵₅₈₉ = 161.5°. ^{19c}

Preparation of (-)-(S)-2b from (+)-(S)-1b. A Schlenk flask was charged with (+)-(S)-1b (21.0 mg, 0.032 mmol, >98% ee), THF (5 mL), and a stir bar. The resulting solution was cooled to -78 °C and LDA (80 μ L, 0.43 M in hexanes, 0.344 mmol) was added. After 6 min, CH₃I (5.0 μ L, 0.080 mmol) was added. The solution was stirred for 15 min at -78 °C. The solvent was removed under oil pump vacuum at -24 °C, and (-)-(S)-2b ([α]²⁵₅₈₉ = 142°, ^{19c} 15.0 mg, 0.022 mmol, 69%) was isolated by silica gel column chromatography in CH₂Cl₂. Addition of Eu(Opt) established, as assayed by the ReCH₃ ¹H NMR resonances, the optical purity of this material to be 32 ± 5% ee.

Preparation of (-)-(S)-2c from (+)-(S)-(η^5 -C₅H₅)Re(NO)(PPh₃)-(CH₃). A Schlenk flask was charged with (+)-(S)-(η^5 -C₅H₅)Re(NO)(PPh₃)(CH₃) (20.4 mg, 0.037 mmol, >98% ee), THF (5 mL), and a stir bar. The resulting orange solution was cooled to -78 °C. Then TMEDA (7 μ L, 0.046 mmol) followed by *n*-BuLi (28 μ L, 2.4 M in hexane, 0.067 mmol) were added. The solution was stirred for 18 min and then (C₆H₅CO)₂O (23.1 mg, 0.102 mmol) was added. The reaction mixture was warmed to -24 °C. After 10 min, solvent was removed under oil pump vacuum at room temperature. The products were isolated by silica gel column chromatography in CH₂Cl₂. This gave (+)-(S)-(η^5 -C₅H₅)Re(NO)(PPh₃)(CH₃) (9.8 mg, 0.018 mmol) and (-)-(S)-2c (7.6 mg, 0.011 mmol, 60% based upon starting material consumed),

 $[\alpha]^{25}_{589} = -563^{\circ}.^{19c}$ Addition of Eu(Opt) established, as assayed by the ReCH₃ ¹H NMR resonances, the optical purity of this material to be >98% ee.

Preparation of (+)-(R)-2c from (-)-(S)-1c. A Schlenk flask was charged with (-)-(S)-1c (25.5 mg, 0.039 mmol, 94% ee), 18 THF (5 mL), and a stir bar. The resulting solution was cooled to -78 °C and LDA (135 μ L, 0.43 in hexanes, 0.058 mmol) was added. After 6 min, CH₃I (4.8 μ L, 0.078 mmol) was added. The orange solution was stirred for 5 min at -78 °C. The solvent was removed under oil pump vacuum at -24 °C, and (+)-(R)-2c ($[\alpha]^{25}_{589} = 186^{\circ}, ^{19c}$ 12.5 mg, 0.019 mmol, 48%) was isolated by silica gel column chromatography in CH₂Cl₂. Addition of Eu(Opt) established, as assayed by the ReCH₃ ¹H NMR resonances, the optical purity of this material to be $32 \pm 5\%$ ee.

Preparation of $(\eta^5\text{-}C_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{CO}_2\text{CH}_3)$. A Schlenk flask was charged with $[(\eta^5\text{-}C_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{CO})]^+\text{BF}_4^-$ (889.2 mg, 1.181 mmol), ⁴⁹ anhydrous CH₃OH (50 mL), and a stir bar. Then NaOCH₃ (255.1 mg, 4.722 mmol) was added, and the reaction was stirred overnight. Then solvent was removed by rotary evaporation, and the dark yellow residue was extracted with CH₂Cl₂. The extract was passed through a plug of Celite. Solvent was removed from the filtrate by rotary evaporation, which gave a yellow bubble-up solid. The solid was washed with hexanes, which gave spectroscopically pure $(\eta^5\text{-}C_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{CO}_2\text{CH}_3)$ as a yellow powder (744 mg, 1.107 mmol, 94%). This was used for subsequent reactions. An analytical sample was crystallized from layered CH₂Cl₂/hexanes. This gave yellow needles, mp 175–177 °C dec. Anal. Calcd for C₃₀H₃₃NO₃PRe: C, 53.57; H, 4.91. Found: C, 53.78; H, 5.20.

Preparation of $(\eta^5\text{-}C_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{COCH}_3)$ (10a). A Schlenk flask was charged with $(\eta^5\text{-}C_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{CO}_2\text{CH}_3)$ (412.9 mg, 0.614 mmol), toluene (35 mL), and a stir bar. Then CH₃MgBr (0.8 mL, 3.0 M in ether, 2.4 mmol) was added and the reaction was stirred for 1 h. Solvent was then removed by rotary evaporation, and the resulting yellow residue was extracted with acetone. The extract was passed through a plug of silica gel and solvent was removed from the filtrate by rotary evaporation. The resulting yellow solid was crystallized from layered CH₂Cl₂/hexanes. This gave dark yellow needles of 10a (354.2 mg, 0.540 mmol, 88%), mp 231-234 °C dec. Anal. Calcd for C₃₀H₃₃NO₂PRe: C, 54.88; H, 5.03. Found: C, 54.68; H, 5.19. Preparation of $(\eta^5\text{-}C_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{COCH}_2\text{CH}_3)$ (11). (A) A

Schlenk flask was charged with 10a (62.5 mg, 0.096 mmol), THF (7 mL), and a stir bar. The resulting yellow solution was cooled to -63 °C and n-BuLi (90 µL, 2.4 M in hexane, 0.216 mmol) was added. The solution turned red, and after 40 min, CH₃I (18 µL, 0.289 mmol) was added. The solution turned orange and was stirred for 20 min at -63 °C. The solvent was then removed under oil pump vacuum at 0 °C. The major product was isolated by silica gel column chromatography with 50:50 (v/v) acetone/hexanes. Recrystallization from CH₂Cl₂/hexanes gave orange crystals of 11 (52.1 mg, 0.078 mmol, 82%), mp 240-241 °C dec. (B) Complex $(\eta^5-C_5Me_5)Re(NO)(PPh_3)(CO_2CH_3)$ (262.0 mg, 0.390 mmol) and CH₃CH₂MgBr (0.55 mL, 2.9 M in ether, 1.60 mmol) were reacted as in the preparation of 10a above. An identical workup gave a yellow residue which was crystallized from layered CH2Cl2/hexanes. This gave orange needles of 11 (187.0 mg, 0.279 mmol, 72%), mp 242-243 °C dec. Anal. Calcd for C₃₁H₃₅NO₂PRe: C, 55.52; H, 5.22. Found: C, 55.58; H, 5.08.

Preparation of $(\eta^5\text{-}C_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{COCH}_2\text{C}_6\text{H}_5)$ (10b). A Schlenk flask was charged with $(\eta^5\text{-}C_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{CO}_2\text{CH}_3)$ (415.6 mg, 0.619 mmol), toluene (25 mL), and a stir bar. The solution was stirred at room temperature and $C_6\text{H}_5\text{CH}_2\text{MgCl}$ (1.24 mL, 2.0 M in THF, 2.480 mmol) was added. After 45 min, solvent was removed by rotary evaporation. The solid was extracted with acetone, and the extract was filtered through a plug of silica gel. The filtrate was concentrated by rotary evaporation to ca. 8 mL. An equal volume of hexanes was added. Orange prisms of 10b formed over the course of 16 h at -24 °C and were collected by filtration and vacuum dried (297.0 mg, 0.406 mmol, 66%), mp 200-204 °C dec. A second crop (12.0 mg, 0.016 mmol, 3%) was obtained from the mother liquor. Anal. Calcd for $C_{36}\text{H}_{37}\text{NO}_2\text{PRe}$: C, 59.02; H, 5.05. Found: C, 58.83; H, 4.85.

Preparation of $(\eta^5\text{-}C_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_3)(\text{COCH}(C_6\text{H}_5)\text{CH}_3)$ (13). A Schlenk flask was charged with **10b** (52.2 mg, 0.071 mmol), THF (5 mL), and a stir bar. The resulting yellow solution was cooled to -78 °C and *n*-BuLi (65 μ L, 2.4 M in hexane, 0.156 mmol) was added. The solution turned red, and after 45 min, CH₃I (16 μ L, 0.256 mmol) was added. The reaction was stirred for 25 min at -78 °C. The solvent was then removed under oil pump vacuum at 0 °C. The major product was isolated by silica gel column chromatography with CH₂Cl₂. HPLC analysis indicated a (96 \pm 1):(4 \pm 1) ratio of diastereomers. Recrys-

⁽⁴⁹⁾ Patton, A. T.; Strouse, C. E.; Knobler, C. B.; Gladysz, J. A. J. Am. Chem. Soc. 1983, 105, 5804.

tallization from acetone/pentane gave orange prisms of 13 (38.2 mg, 0.051 mmol, 72%), mp 204-208 °C dec. Anal. Calc C₃₇H₃₉NO₂PRe: C, 59.52; H, 5.23. Found: C, 59.37; H, 5.53.

Preparation of (η^5 -C₅H₅)Re(NO)(PPh₃)(COCH₂Si(CH₃)₃) (14). A Schlenk flask was charged with (η^5 -C₅H₅)Re(NO)(PPh₃)(CO₂CH₃) (300 mg, 0.498 mmol), toluene (30 mL), and a stir bar. Then (CH₃)₃SiC-H₂MgCl (1.75 mL, 1.0 M in ether, 1.75 mmol) was added and the reaction was stirred for 10 h. Then 2 mL of freshly distilled CH₃OH was added and the solvents were removed under oil pump vacuum. The resulting yellow residue was extracted with benzene (3 × 10 mL; glovebox) and filtered through a coarse porosity frit. Solvent was removed from the filtrate under oil pump vacuum. The yellow residue was extracted with CH2Cl2. Then three volumes of hexanes were added. Solvent was removed under oil pump vacuum to give 14 as a yellow powder (212 mg, 0.322 mmol, 65%), mp 153-154 °C dec. An analytical sample was prepared by taking 14 (30 mg) up in ether (4 mL), adding heptane (8 mL), and concentrating by rotary evaporation. Anal. Calcd for C₂₈H₃₁NO₂SiPRe: C, 51.06; H, 4.71. Found: C, 51.23; H, 4.85.

Preparation of $(\eta^5 - C_5H_5)Re(NO)(PPh_3)(C(OSi(CH_3)_3) = CH_2)$ (15). A 200 \times 6 mm glass tube was charged with 14 (90 mg, 0.137 mmol), evacuated for 30 min, and sealed. The tube was then immersed in a 160 °C oil bath for 20 min. The yellow solid melted with some gas evolution. The resulting dark red melt was allowed to cool to room temperature, and the reaction was transferred to a glovebox for the remaining workup. The melt was extracted with THF and the solvent removed by high vacuum rotary evaporation to give a yellowish-brown bubble up solid. This solid was then extracted with 2×2.5 mL of ether. The ether was removed by high vacuum rotary evaporation to give a yellow bubble-up solid (60 mg), which ¹H NMR analysis showed to be a 87:13 mixture of 15 (0.81 mmol, 59%) and 1a. Attempts to remove the 1a by extraction and recrystallization were unsuccessful.

Preparation of (SR,RS)- $(\eta^5-C_5H_5)Re(NO)(PPh_3)(COCH(C_6H_5)-Re(NO)(PPh_3))$ CH₃) ((SR,RS)-16). A Schlenk flask was charged with 1b (200 mg, 0.302 mmol), THF (4 mL), and a stir bar. The resulting yellow solution was cooled to 0 °C and Li⁺-N(Si(CH₃)₃)₂ (970 μL, 1.0 M in hexanes, 0.970 mmol) was added. Within 30 min, the solution turned deep red. The solution was kept at 0 °C overnight, and then CH₃OSO₂CF₃ (125 μ L, 1.105 mmol) was added. The solution was then stirred for 30 min at room temperature. Solvent was removed under oil pump vacuum, and the residue was chromatographed on silica gel with CH2Cl2. Some starting material (18.1 mg, 0.027 mmol, 9%) was recovered, and (SR,-RS)-16 was obtained. This material was recrystallized from layered CH₂Cl₂/hexanes, which gave yellow needles (99 mg, 0.146 mmol, 53% based upon starting material consumed), mp 194-196 °C dec. HPLC analyses before and after recrystallization indicated a (98 \pm 1):(2 \pm 1) ratio of diastereomers. Anal. Calcd for C₃₂H₂₉NO₂PRe: C, 56.80; H, 4.29. Found: C, 56.57; H, 4.40.

Monitoring of Reactions by ³¹P NMR. The following experiment is representative. A 5-mm NMR tube was charged with 1a (15 mg, 0.026 mmol) and THF (0.35 mL) and capped with a septum. A ³¹P NMR spectrum was recorded at -95 °C (15.6 ppm). The tube was then cooled to -98 °C in a CH₃OH/liquid nitrogen slush bath. Then LDA in hexanes (95 μ L, 0.43 M, 0.041 mmol) was added. The sample was shaken and immediately transferred back to the -95 °C NMR probe. A broad singlet, 43.8 ppm, was observed.

Deuterated Compounds. Compounds not described below were prepared by obvious modifications of published routes to unlabeled compounds. (η⁵-C₅D₅)Re(CO)₃:50 A Schlenk flask was fitted with a reflux condenser and was charged with C₅D₅Tl (1.49 g, 5.438 mmol),¹⁵ (C-O)₅ReBr (2.00 g, 4.926 mmol), benzene (40 mL), and a stir bar. The reaction was refluxed with stirring for 24 h. The resulting suspension of a white solid in a yellow solution was filtered, and the white residue obtained was extracted with 3 × 30 mL of CH₂Cl₂. The organic fractions were combined and solvents were removed by rotary evaporation. The resulting off-white residue was sublimed (80 °C, 0.05 mmHg) to give white crystals of $(\eta^5 - C_5 D_5) Re(CO)_3$ (1.457 g, 4.285 mmol, 87%). (C₆-H₅)₂P(C₆D₅) was prepared from (C₆H₅)₂PCl and C₆D₅MgBr according to a literature procedure. 51 Analysis: The isotopic purity of C₅D₂Tl was assayed by 70-eV mass spectral analysis. In a typical preparation, 15 the m/e 272:273:274:275 ratio was 3.8:43.1:8.8:100, while the m/e 268:270 ratio for natural abundance C5H5Tl under identical conditions was 47.3:100. From these data, the C₅D₅Tl:C₅D₅HTl ratio was calculated to be (90 ± 2) : (10 ± 2) . The isotopic purity of formyl complex 1d-d. was assayed by similar mass spectral analysis of its BH3. THF reduction product, $^{13}(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH_3)-d_x$. Other compounds were assayed directly.

Labeling Experiments. (A) A (90 \pm 2):(10 \pm 2) mixture of (η^5 - C_5D_5)Re(NO)(PPh₃)(COCH₃) and $(\eta^5-C_5D_4H)$ Re(NO)(PPh₃)-(COCH₂) was converted to 2a as described above. The 70-eV mass spectrum of the product exhibited a m/e 545:546:547:548 ratio of 63.9:27.0:100:25.9. Under identical conditions, the m/e 541:542:543:544 ratio for natural abundance 2a was 64.4:29.5:100:24.7. These data indicate a $2a-d_4/2a-d_3$ ratio of >98:2. (B) A (95 ± 2):(5 ± 2) mixture of $(\eta^5-C_5H_5)Re(NO)(PPh_3)(CDO)$ (1a-d₁) and 1a-d₀ was converted to 2d as described above. The 70-eV mass spectrum of the product exhibited a m/e 585:586:587:588:589:590 ratio of 3.3:60.8:21.2:100:27.9:4.1. Under identical conditions the m/e 585:586:587:588:589 ratio for natural abundance 2d was 58.4:17.4:100:27.9:3.8. These data indicate a 2d d_1 :2d- d_0 ratio of (95 ± 2):(5 ± 2). (C) A mixture of 1c (18.0 mg, 0.028 mmol) and $(\eta^5-C_5D_5)$ Re(NO)(PPh₃)(COC₆D₅) (1c- d_{10} ; (90 ± 2):(10 ± 2) d_{10}/d_9 ; 18.6 mg, 0.028 mmol) in THF (6 mL) was converted to 2c as described above. The 70-eV mass spectrum of the product was the superposition of the mass spectra of independently prepared 2c and 2c-d₉. (D) A mixture of 1c (15.2 mg, 0.024 mmol) and $(\eta^5-C_5H_5)Re(NO)$ - $(PPh_3-d_5)(COC_6D_5)$ (1c- d_{10} ; (98 ± 1):(2 ± 1) d_{10}/d_9 ; 15.5 mg, 0.024 mmol) in THF (1.5 mL) was converted to 2c as described above. The 70-eV mass spectrum of the product was the superposition of the mass spectra of independently prepared 2c and 2c- d_{10} . (E) A mixture of 1d (19.0 mg, 0.033 mmol) and $(\eta^5 - C_5 D_5) \text{Re}(NO) (PPh_3) (CDO)$ (1d-d₆) (82 \pm 2):(16 \pm 2):(2 \pm 1) $d_6/d_5/d_4$; 20.0 mg, 0.035 mmol) in THF (6 mL) was converted to **2d** as described above. The 70-eV mass spectrum of the product showed a m/e 585:586:587:588:589:590:591:592:593 ratio 61.0:25.0:100:35.6:18.1:72.9:34.6:128:33.8. From the m/e585:586:587:588 ratio of natural abundance 2d noted above, a (92 \pm 2):(8 \pm 2) ratio of 2d-d₀/2d-d₁ was calculated. From the m/e590:591:592:593 ratio of 2d derived from an independently reacted sample of $1d-d_6$, a (85 ± 2):(15 ± 2) ratio of $2d-d_5/2d-d_4$ was calculated.

Acknowledgment. We thank the NIH for support of the research involving acyl complexes, the DOE for support of the research involving formyl complexes, Professor P. Helquist for the communication of unpublished data, 20 W. E. Buhro and X. Zhao for some preliminary experimental observations, and G. L. Crocco for some ³¹P NMR data. Mass spectrometers utilized were obtained via National Science Foundation instrumentation grants.

Registry No. 1a, 82582-46-5; (+)-(S)-1a, 87480-06-0; 1b, 82582-48-7; (+)-(S)-1b, 100017-75-2; 1c, 76770-59-7; (-)-(S)-1c, 87480-05-5; 1d, 70083-74-8; **2a**, 93304-78-0; (-)-(S)-**2a**, 93381-97-6; **2b**, 93304-82-6; (-)-(S)-**2b**, 100017-74-1; **2c**, 93304-80-4; (-)-(S)-**2c**, 100018-81-3; (+)-(R)-**2c**, 100017-76-3; **2d**, 98606-30-5; **5**, 93304-87-1; **7**, 93304-85-9; 10a, 99901-55-0; 10b, 99901-57-2; 11, 99901-56-1; 13, 99901-58-3; 14, 99921-92-3; **15**, 99921-93-4; (SR,RS)-**16**, 99901-59-4; $(\eta^5$ -C₅H₅)Re-(NO)(PPh₃)(CH₂C₆H₅), 71763-28-5; (η^5 -C₅H₅)Re(NO)(PPh₃)(CH₃), 71763-18-3; (+)-(S)-(η^5 -C₅H₅)Re(NO)(PPh₃)(CH₃), 82336-24-1; $(+)-(S)-(\eta^5-C_5H_5)Re(NO)(PPh_3)(CO_2CH_3), 87480-09-9; (\eta^5-C_5Me_5) Re(NO)(PPh_3)(CO_2CH_3)$, 99901-54-9; $[(\eta^5-C_5Me_5)Re(NO)(PPh_3)-$ (CO)]+BF₄-, 86497-31-6; $(\eta^5-C_5D_5)Re(CO)_3$, 99901-60-7; C_5D_5TI , 64055-35-2; (CO)₅ReBr, 14220-21-4.

⁽⁵⁰⁾ This procedure is based upon unpublished work of J. E. Sheats and K. G. Podejko, Rider College. We thank these authors for sharing their preparation.

⁽⁵¹⁾ Bennett, M. A.; Milner, D. L. J. Am. Chem. Soc. 1969, 91, 6983.